Advertisement

Marine Biology

, Volume 111, Issue 1, pp 157–165 | Cite as

Application of tree architectural models to reef-coral growth forms

  • J. -M. Dauget
Article

Abstract

With the aim of gaining a better understanding of constant traits in coral colony form, architectural methods used for tropical trees were applied to 16 hermatypic ramose coral species of the Seribu archipelago (North of Jakarta, Java Sea, Indonesia), in 1983. Architectural analysis of colonies has distinguished four simple and stable architectural models. A new interpretation of coral colony form is proposed using both the architectural model and the reiteration of the model.

Keywords

Indonesia Colony Form Growth Form Coral Species Tropical Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Best, M. B., Boekschoten, G. J., Oosterbaan, A. (1984). Species concept and ecomorph variation in living and fossil Scleractinia. Palaeontogr. am. 54: 70–79Google Scholar
  2. Bottjer, D. J. (1980). Branching morphology of the reef coralAcropora cervicornis in different hydraulic regimes. J. Paleont. 54: 1102–1107Google Scholar
  3. Brook, G. (1893). The genusMadrepora. Catalogue madreporarian corals. British Museum (Natural History), LondonGoogle Scholar
  4. Connel, J. (1973). Population ecology of reef-buildings corals. In: Jones, O. A., Endean, R. (eds.) Biology and geology of coral reefs. Vol II. Biology 1. Academic Press, New York, p. 205–245Google Scholar
  5. Dauget, J. M. (1985). La réaction aux traumatismes: comparaison entre les arbres et les coraux. Revue Ecol. (Terre Vie) 40: 113–118Google Scholar
  6. Dauget, J. M. (1986). Application des méthodes architecturales aux coraux. Quelques traits communs aux formes vivantes fixées. Doctorat. Université des Sciences et Techniques du Languedoc, MontpellierGoogle Scholar
  7. Fang, L. S., Chen, Y. W. J., Chen, C. S. (1989). Why does the white tip of stony coral grow so fast without zooxanthellae? Mar. Biol. 103: 359–363CrossRefGoogle Scholar
  8. Foster, A. B. (1979). Phenotypic plasticity in the reef coralsMontastrea annularis (Ellis and Solander) andSiderastrea siderea (Ellis and Solander) J. exp. mar. Biol. Ecol. 39: 25–54CrossRefGoogle Scholar
  9. Geister, J. (1972). Zur Ökologie und Wuchsform der SäulenkoralleDendrogyra cylindrus Ehrenberg. Beobachtungen in den Riffen der Insel San Andrés (Karibisches Meer, Kolumbien). Mitt. Inst. Colombo-Aleman Invest. cient. 6: 77–87Google Scholar
  10. Geister, J. (1980). Morphologie et distribution des coraux dans les récifs actuels de la mer des Caraïbes. Annali Univ. Ferrara (Sez. 9:Sci. geol. paleont.) 6 (Suppl.): 15–28Google Scholar
  11. Graus, R. R., Macintyre, I. G. (1976). Light control and growth form in colonial reef corals: computer simulation. Science N.Y. 193: 895–897Google Scholar
  12. Graus, R. R., Macintyre, I. G. (1982). Variation in growth forms of the reef coral:Montastrea annularis (Ellis and Solander): a quantitative evaluation of growth response to light distribution using computer simulation. Smithson. Contr. mar. Sci. 12: 441–464Google Scholar
  13. Hallé, F., Oldeman, R. A. A. (1970). Essai sur l'architecture et la dynamique de croissance des arbres tropicaux. Masson, ParisGoogle Scholar
  14. Hallé, F., Oldeman, R. A. A., Tomlinson, P. B. (1978). Tropical trees and forests. An architectural analysis. Springer-Verlag, Berlin-Heidelberg-New YorkGoogle Scholar
  15. Highsmith, R. C. (1982). Reproduction by fragmentation in corals. Mar. Ecol. Prog. Ser. 7: 207–226Google Scholar
  16. Jaubert, J. (1977). Light, metabolism and growth forms of the hermatypic scleractinian coralSynarea convexa Verril, in the lagoon of Moorea (French Polynesia). Proc. 3rd int. coral. Reef. Symp. 1: 483–488. [Taylor, D. L. (ed.) School of Marine and Atmospheric Science, University of Miami]Google Scholar
  17. Kawaguti, S. (1937). On the physiology of reef corals. Palao trop. biol. Stn Stud. 2; Part I: 187–198; Part II: 199–208; Part III: 209–216Google Scholar
  18. Laborel, J. (1969). Madréporaires et Hydrocoralliaires récifaux des côtes brésiliennes. Résult. scient. Camp. Calypso 9: 171–228Google Scholar
  19. Loya, Y. (1976). Skeletal regeneration in a Red Sea scleractinean coral population. Nature, Lond. 261: 490–491Google Scholar
  20. Oldeman, R. A. A. (1974). L'architecture de la forêt guyanaise. Mém. Off. Rech. scient. tech. Outre-Mer 73: 1–204Google Scholar
  21. Pearse, V. B., Muscatine, L. (1971). Role of symbiotic algae (zooxanthellae) in coral calcification. Biol. Bull. mar. biol. Lab., Woods Hole 141: 350–363Google Scholar
  22. Randall, R. H. (1981). Morphologic diversity in the scleractinian genusAcropora. Proc 4th int. coral. Reef Symp. 2: 157–164. [Gomez, E. D. et al. (eds.) Marine Sciences Center, University of the Philippines, Quezon City, Philippines]Google Scholar
  23. Rosen, B. R. (1986). Modula growth and form of corals: a matter of metamers? Phil. Trans. R. Soc. Lond. (Ser. B) 313: 115–142Google Scholar
  24. Stephenson, T., Stephenson, A. (1933). Growth and asexual reproduction in corals. Scient. Rep. Gt Barrier Reef Exped. 3: 167–217Google Scholar
  25. Stimson, J. S. (1978). Mode and timing of reproduction in some common hermatypic corals of Hawaii and Enewetak. Mar. Biol. 38: 173–184CrossRefGoogle Scholar
  26. Taylor, D. L. (1977). Intra-colonial transport of organic compounds and calcium in some Atlantic reef corals. Proc. 3rd int. coral. Reef Symp. 1: 431–436. [Taylor, D. L. (ed.) School of Marine and Atmospheric Sciences, University of Miami]Google Scholar
  27. Veron, J. E. N., Pichon, M. (1976). Scleractinia of Eastern Australia. Part I. Monograph Ser. Aust. Inst. mar. Sci. 1: 1–86Google Scholar
  28. Veron, J. E. N., Pichon, M. (1979). Scleractinia of Eastern Australia. Part III. Monograph Ser. Aust. Inst. mar. Sci. 4: 1–459Google Scholar
  29. Veron, J. E. N., Pichon, M., Wijsman-Best (1977). Scleractinia of Eastern Australia. Part III. Monograph Ser. Aust. Inst. mar. Sci. 3: 1–233Google Scholar
  30. Wallace, C. C. (1978). The coral genusAcropora (Scleractinia, Astrocoeniina: Acroporidae) in the central and southern Great Barrier Reef province. Mem. Qd Mus. 18: 273–319Google Scholar
  31. Wallace, C., Dallwitz, M. J. (1981). Key to species of the coral genusAcropora from the Great Barrier Reef (prototype). James Cook University of North Queensland, TownsvilleGoogle Scholar
  32. Wells, J. W. (1966). Evolutionary development in the scleractinian family Fungiidae. Symp. zool. Soc. Lond. 16: 223–246Google Scholar
  33. Wood Jones, F. (1907). On the growth forms and supposed species in corals. Proc. zool. Soc. Lond. 2: 518–556Google Scholar
  34. Wood Jones, F. (1910). Corals and atolls. Lovell Reeve & Co. Ltd., LondonGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • J. -M. Dauget
    • 1
  1. 1.Laboratoire de Botanique, Institut de BotaniqueUniversité des Sciences et Techniques du LanguedocMontpellierFrance

Personalised recommendations