Marine Biology

, Volume 111, Issue 1, pp 121–127 | Cite as

Effects of disc and arm loss on regeneration byMicrophiopholis gracillima (Echinodermata: Ophiuroidea) in nutrient-free seawater

  • K. T. Fielman
  • S. E. Stancyk
  • W. E. Dobson
  • L. A. Jerome Clements


IndividualMicrophiopholis gracillima (Stimpson) were collected in February 1987 from an intertidal mudflat in the North Inlet Estuary near Georgetown, South Carolina, USA, and allowed to regenerate for 10 or 20 d in nutrient-free seawater after having different amounts of disc and/or arm tissue removed. In the absence of external nutrients, the pattern of regeneration was affected by both the quantity and type of tissue lost, and changed over time. Depending upon which tissues were lost,M. gracillima allocated stored materials to disc and/or arm regeneration until a gut and three complete arms were achieved. This “minimal functional configuration” allows the brittlestar to construct its respiration and feeding burrows and digest whatever food it captures. In the absence of external nutrients,M. gracillima slowed the rate of regeneration once this state was reached, subsequently using nutrients for maintenance metabolism only. Brittlestars which suffer frequent sublethal tissue loss in nature have regeneration patterns that result from a complex interplay between time, quantity and quality of tissue lost, available nutrients and risk of future damage or mortality.


Respiration Complex Interplay Regeneration Pattern Tissue Loss External Nutrient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Barnes, R. D. (1980). Invertebrate zoology, 4th ed. Saunders College, PhiladelphiaGoogle Scholar
  2. Bell, G. (1976). On breeding more than once. Am. Nat. 110: 55–77CrossRefGoogle Scholar
  3. Bell, G. (1980). The costs of reproduction and their consequences. Am. Nat. 116: 45–76CrossRefGoogle Scholar
  4. Bergman, M. J. N., Van der Veer H. W., Karczmarski L. (1988). Impact of tail-nipping on mortality, growth and reproduction ofArenicola marina. Neth. J. Sea. Res. 22: 83–90CrossRefGoogle Scholar
  5. Brown, B. K. (1981). Gut replacement during regeneration of the autotomized disc ofOphiophragmus filiograneus (Echinodermata: Ophiuroidea). M. Sc. thesis. Florida Institute of Technology, MelbourneGoogle Scholar
  6. Bowmer, T., Keegan, B. F. (1983). Field survey of the occurrence and significance of regeneration inAmphiura filiformis (Echinodermata: Ophiuroidea) from Galway Bay, west coast of Ireland. Mar. Biol. 74: 65–71CrossRefGoogle Scholar
  7. Buchanan, J. B. (1964). A comparative study of some features of the biology ofAmphiura filiformis andAmphiura chiajei (Ophiuroidea) considered in relation to their distribution. J. mar. biol. Ass. UK 44: 565–576Google Scholar
  8. Cavanaugh, G. M. (1965). Formulae and methods V. of the Marine Biological Laboratory chemical room. Marine Biological Laboratory, Woods Hole, Mass.Google Scholar
  9. Clements, L. A. J. (1985). Post-autotomy feeding behavior ofMicrophiopholis gracillima (Stimpson): implications for regeneration. In: Keegan, B. F., O'Connor, B. D. (eds.) Echinodermata, Proceedings of the Fifth International Echinoderm Conference, Galway, Ireland. A. A. Balkema, Rotterdam, p. 609–616Google Scholar
  10. Clements, L. A. J. (1988). Uptake and utilization of dissolved free amino acids by the brittlestarMicrophiopholis gracillima (Say, 1852) (Echinodermata: Ophiuroidea) during disc regeneration. Ph. D. dissertation. University of South CarolinaGoogle Scholar
  11. Clements, L. A. J., Fielman, K. T., Stancyk, S. E. (1988). Regeneration by an amphiurid brittlestar exposed to different concentrations of dissolved organic material. J. exp. mar. Biol. Ecol. 122: 47–61CrossRefGoogle Scholar
  12. DeVlas, J. (1979a). Annual food intake by plaice and flounders in a tidal flat area in the Dutch Wadden Sea, with special reference to consumption of regenerating parts of macrobenthic prey. Neth. J. Sea Res. 13: 117–153CrossRefGoogle Scholar
  13. DeVlas, J. (1979b). Secondary production by tail regeneration in a tidal flat population of lugworms (Arenicola marina) cropped by flatfish. Neth. J. Sea Res. 13: 362–393CrossRefGoogle Scholar
  14. Dobson, W. E. (1985). A pharmacological study of neural mediation of disc autotomy inOphiophragmus filograneus (Lyman) (Echinodermata: Ophiuroidea). J. exp. mar. Biol. Ecol. 94: 223–232CrossRefGoogle Scholar
  15. Dobson, W. E. (1988). Early post-autotomy tissue regeneration and nutrient translocation in the brittlestarMicrophiopholis gracillima (Stimpson) (Echinodermata: Ophiuroidea). Ph. D. dissertation. University of S. CarolinaGoogle Scholar
  16. Dobson, W. E., Stancyk, S. E., Clements, L. A, Showman, R. M. (1991). Nutrient translocation during early disc regeneration in the brittlestarMicrophiopholis gracillima (Stimpson) (Echinodermata: Ophiuroidea). Biol. Bull. mar. biol. Lab., Woods Hole 180: 167–184Google Scholar
  17. Donachy, J. E., Watabe, N. (1986). Effects of salinity and calcium concentration on arm regeneration byOphiothrix angulata (Echinodermata: Ophiuroidea). Mar. Biol. 91: 253–257CrossRefGoogle Scholar
  18. Duineveld, G. C. A., Van Noort, G. J. (1986). Observations on the population dynamics ofAmphiura filiformis (Ophiuroidea: Echinodermata) in the southern North Sea and its exploitation by the dab,Limanda limanda. Neth. J. Sea Res. 20: 85–94CrossRefGoogle Scholar
  19. Ebert, T. A. (1967a). Growth and repair of spines in the sea urchinStrongylocentrototus purpuratus (Stimpson). Biol. Bull. mar. biol. Lab., Woods Hole 133: 141–149Google Scholar
  20. Ebert, T. A. (1967b). Negative growth and longevity in the purple sea urchinStrongylocentrotus purpuratus (Stimpson). Science, N.Y. 157: 557–558Google Scholar
  21. Emson, R. H., Wilkie, I. (1980). Fission and autotomy in echinoderms. Oceanogr. mar. Biol. A. Rev. 18: 155–250Google Scholar
  22. Harris, R. N. (1989). Nonlethal injury to organisms as a mechanism of population regulation. Am. Nat. 134: 835–847CrossRefGoogle Scholar
  23. Hyman, L. H. (1955). The invertebrates, Vol 4. Echinodermata: the coelomate bilateria. McGraw-Hill, New YorkGoogle Scholar
  24. King, D., Roughgarden, J. (1982). Graded allocation between vegetative and reproductive growth for annual plants in growing seasons of random length. Theor. Popul. Biol. 22: 1–16CrossRefGoogle Scholar
  25. Kirkwood, T. B. L. (1981). Repair and its evolution: survival versus reproduction. In: Townsend, C. R., Calow, P. (eds.) Physiological ecology: an evolutionary approach to resource use. Sinauer Assoc Inc., Sunderland, Massachusetts, p. 165–189Google Scholar
  26. Lawn, I. D., Ross, D. M. (1982). The behavioural physiology of the swimming sea anemoneBoloceroides mcmurrichi. Proc. R. Soc. (Ser. B) 216: 315–334Google Scholar
  27. Lawrence, J. M., Klinger, T. S., McClintock, J. B., Watts, S. A., Chen, C. P., Marsh, A., Smith, L. (1986). Allocation of nutrient resources to body components by regeneratingLuidia clathrata (Say) (Echinodermata: Asteroidea). J. exp. mar. Biol. Ecol. 102: 47–53CrossRefGoogle Scholar
  28. Lawrence, J. M., Lane, J. M. (1982). The utilization of nutrients by post-metamorphic echinoderms. In: Jangou, M., Lawrence, J. M., (eds.) Echinoderm nutrition. A. A. Balkema, Rotterdam, p. 331–371Google Scholar
  29. Levitan, D. R. (1988). Density-dependent size regulation and negative growth in the sea urchinDiadema antillarum (Phillipi). Oecologia 76: 627–629Google Scholar
  30. McVean, A. (1982). Autotomy. In: Sandeman, D. C., Atwood, H. L. (eds.) The biology of Crustacea, Vol 4. Neural integration and behavior. Academic Press, New York, p. 107–132Google Scholar
  31. Meyer, D. L. (1985). Evolutionary implications of predation on recent comatulid crinoids from the Great Barrier Reef. Paleobiology 11: 154–164Google Scholar
  32. Meyer, D. L. (1988). Crinoids as renewable resources: rapid regeneration of the visceral mass in a tropical reef-dwelling crinoid from Australia. In: Burke, R. D., Mladenov, P. V., Lambert, P., Parsley, R. D. (eds.) Echinoderm biology. A. A. Balkema, Rotterdam, p. 519–522Google Scholar
  33. Mladenov, P. V. (1983). Rate of arm regeneration and potential causes of arm loss in the feather starFlorometra serratissima (Echinodermata: Crinoidea). Can. J. Zool. 61: 2873–2879Google Scholar
  34. Morgulis, S. (1909). Regeneration in the brittle-starOphiocoma pumila, with special reference to the influence of the nervous system. Proc. Am. Acad. Arts Sci. 44: 655–659Google Scholar
  35. Morton, B. (1984). Siphonal autotomy inSolen corneus (Bivalvia: Solenoidea) from Hong Kong. Malac. Rev. 17: 95–96Google Scholar
  36. Peterson, C. H., Quammen, M. L. (1982). Siphon nipping: its importance to small fishes and its impact on growth of the bivalveProtothaca staminea (Conrad). J. exp. mar. Biol. Ecol. 63: 249–268CrossRefGoogle Scholar
  37. Salzwedel, H. (1974). Arm-regeneration beiAmphiura filiformis (Ophiuroidea). Veröff. Inst. Meeresforsch. Bremerh. 14: 161–167Google Scholar
  38. Smith, G. N. (1971a). Regeneration in the sea cucumber,Leptosynapta. I. The process of regeneration. J. exp. Zool. 117: 319–330CrossRefGoogle Scholar
  39. Smith, G. N. (1971b). Regeneration in the sea cucumber,Leptosynapta. II. The regenerative capacity. J. exp. Zool. 117: 331–342CrossRefGoogle Scholar
  40. Sokal, R. R., Rohlf, F. J. (1981). Biometry. The principles and practice of statistics in biological research. W. H. Freeman & Co., San FranciscoGoogle Scholar
  41. Stearns, S. C. (1976). Life history tactics: a review of the ideas. Q. Rev. Biol. 51: 3–47CrossRefPubMedGoogle Scholar
  42. Sullivan, K. M. (1988). Physiological ecology and energetics of regeneration in reef rubble brittlestars. In: Burke, R. D., Mladenov, P. V., Lambert, P., Parsley, R. D. (eds.) Echinoderm biology. A. A. Balkema, Rotterdam, p. 523–529Google Scholar
  43. Swan, E.F. (1966). Growth, autotomy, and regeneration. In: Boolootian, R. A. (ed.) Physiology of echinoderms. Interscience Publishers, New York, p. 397–434Google Scholar
  44. Trevallion, A. (1971). Studies onTellina tenuis da Costa. III. Aspects of general biology and energy flow. J. exp. mar. Biol. Ecol. 7: 95–122CrossRefGoogle Scholar
  45. Turner, R. L., Heatwole, D. W., Stancyk, S. E. (1982). Ophiuroid discs in stingray stomachs: evasive autotomy or partial consumption of prey? In: Lawrence, J. M. (ed.) Echinoderms. Proceedings of the International Conference, Tampa Bay. A. A. Balkema, Rotterdam, p. 331–335Google Scholar
  46. Turner, R. L., Murdoch, D. (1976). Potential of arms as a nutrient source for disc regeneration in brittlestars. Am. Zool. 16:p. 288 (Abstract)Google Scholar
  47. Wassenberg, T. J., Hill, B. J. (1987). Natural diet of the tiger prawnsPeneaus esculentus andP. semisulcatus. Aust. J. mar. Freshwat. Res. 38: 169–182Google Scholar
  48. Wilkinson, L. (1987). Systat: the system for statistics. SYSTAT, Inc., Evanston, IllinoisGoogle Scholar
  49. Williams, G. C. (1966). Natural selection, the cost of reproduction, and a refinement of Lack's principle. Am. Nat. 100: 687–690CrossRefGoogle Scholar
  50. Woodin, S. A. (1982). Browsing: important in marine sedimentary environments? Spionid polychaete examples. J. exp. mar. Biol. Ecol. 60: 35–45CrossRefGoogle Scholar
  51. Woodin, S. A. (1984). Effects of browsing predators: activity changes in infauna following tissue loss. Biol. Bull. mar. biol. Lab., Woods Hole 166: 558–573Google Scholar
  52. Zajac, R. N. (1985). The effects of sublethal predation on reproduction in the spionid polychaetePolydora ligni Webster J. exp. mar. Biol. Ecol. 88: 1–19CrossRefGoogle Scholar
  53. Zar, J. H. (1984). Biostatistical analysis. Prentice-Hall, Inc, Englewood Cliffs, New JerseyGoogle Scholar
  54. Zeleny, C. (1903). A study of the rate of regeneration of the arms in the brittle-star,Ophioglypha lacertosa. Biol. Bull. mar. biol. Lab., Woods Hole 6: 12–17Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • K. T. Fielman
    • 1
  • S. E. Stancyk
    • 1
  • W. E. Dobson
    • 1
  • L. A. Jerome Clements
    • 1
  1. 1.Belle W. Baruch Institute for Marine Biology and Coastal Research, Department of Biology and Marine Science ProgramUniversity of South CarolinaColumbiaUSA

Personalised recommendations