Advertisement

Marine Biology

, Volume 111, Issue 1, pp 95–111 | Cite as

Architecture of, and water circulation and flow rate in, the house of the planktonic tunicateOikopleura labradoriensis

  • P. R. Flood
Article

Abstract

The gelatinous house ofOikopleura labradoriensis (Tunicata, Appendicularia), collected from the docks of Friday Harbor Laboratories, University of Washington, USA, in 1984, 1986 and 1990, was examined in vivo by stereomicroscopy and strobe-light macrophotography, and after fixation and processing for light and electron microscopy. In addition to confirming previous knowledge and adding new information on structural organization of the oikopleurid house, this study presents quantitative data on important aspects of its function. Particles small enough to pass through the inlet filters (pore width ~13 µm) were concentrated between differently constructed upper and lower food-concentrating filters (pore widths 0.18 and 0.24 µm, respectively). These filtes were held together by an intermediary screen of widely separated ribbon-like filaments. Water sieved through the filters left the house through a pressure-regulated exit valve. However, the intermittent activity of the tail pump and the elasticity of the house caused frequent refluxes of water that cleared both inlet filters and foodconcentrating filter screens of adhering particles. During these refluxes the food-concentrating filters usually collapsed and compacted the trapped particles into coarser aggregates. With each pumping cycle the particles and aggregates were brought closer to the midline. From here they were periodically drained into the mouth of the organism through a medial food-collecting tube, to be recaptured in a pharyngeal feeding filter secreted by the organism's endostyle. Based on the size and movements of the tail within the close-fitting tail chamber, a water flow rate of ~0.84 ml min−1 was calculated for medium-sized houses (belonging to individuals with trunk length of ca. 1.2 mm). Taking the intermittent pumping activity of the tail into account, this equals ~35 ml h−1. Flow through the food-collecting tube was ~1 µl min−1, laminar and intermittent, and was probably comparable to a rate of ~0.04 ml h−1. Accordingly, the house allowed the oikopleurid to feed on a ca. 1000 × concentrated suspension of particles. Water speed through the meshes of the food-concentrating filters was ca. 0.15 mm min−1, or 2.5 µm s−1.

Keywords

Dock Coarse Aggregate Water Circulation Water Flow Rate Pore Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Alldredge, A. L. (1976a). Appendicularians. Scient Am. 235: 94–102Google Scholar
  2. Alldredge, A. L. (1976b). Field behavior and adaptive strategies of Appendicularians (Chordata: Tunicata). Mar. Biol. 38: 29–39CrossRefGoogle Scholar
  3. Alldredge, A. L. (1977). House morphology and mechanisms of feeding in theOikopleuridae (Tunicata, Appendicularia). J. Zool., Lond. 181: 175–188Google Scholar
  4. Alldredge, A. L. (1981). The impact of appendicularian grazing on natural food concentration in situ. Limnol. Oceanogr. 26: 247–257Google Scholar
  5. Barham, E. G. (1979). Giant larvacean houses: observations from deep submersibles. Science, N.Y. 205: 1129–1131Google Scholar
  6. Bone, Q., Braconnot, J.-C., Ryan, K. P. (1991). On the pharyngeal feeding filter of the salpPegea confoederata (Tunicata, Thaliacea). Acta zool., Stockh. 72: 55–60Google Scholar
  7. Bone, Q., Ryan, K. P. (1979). The Langerhans receptor ofOikopleura (Tunicata: Larvacea) J. mar. biol. Ass. U.K. 59: 69–75Google Scholar
  8. Deibel, D. (1986). Feeding mechanism and house of the appendicularianOikopleura vanhoeffeni. Mar. Biol. 93: 429–436CrossRefGoogle Scholar
  9. Deibel, D. (1988). Filter feeding byOikopleura vanhoeffeni: grazing impact on suspended particles in cold ocean waters. Mar. Biol. 99: 177–186CrossRefGoogle Scholar
  10. Deibel, D., Dickson, M.-L., Powell, C. V. L. (1985). Ultrastructure of the mucous feeding filter of the house of the appendicularianOikopleura vanhoeffeni. Mar. Ecol. Prog. Ser. 27: 79–86Google Scholar
  11. Deibel, D., Powell, C. V. L. (1987a). Comparison of the ultrastructure of the food concentrating filter of two appendicularians. Mar. Ecol. Prog. Ser. 39: 81–85Google Scholar
  12. Deibel, D., Powell, C. V. L. (1987b), Ultrastructure of the pharyngeal filter of the appendicularianOikopleura vanhoeffeni: implications for particle size selection and fluid mechanics. Mar. Ecol. Prog. Ser. 35: 243–250Google Scholar
  13. Fenaux, R. (1986). The house ofOikopleura dioica (Tunicata, Appendicularia): structure and function. Zoomorphology 106: 224–231CrossRefGoogle Scholar
  14. Fenaux, R., Hirel, B. (1972). Cinetique du deploiement de la logette chez l'appendiculaireOikopleura dioica Fol, 1872. C. r. hebd. Séanc. Acad. Sci., Paris 275: 444–452Google Scholar
  15. Fenaux, R., Malara, G. (1990). Taux de filtration de l'appendiculaireOikopleura dioica Fol 1872. Rapp. P-v. Réun. Commn int. Explor. scient. Mer Méditerr. 32, part 1: p. v20Google Scholar
  16. Flood, P. R. (1978). Filter characteristics of appendicularian food catching nets. Experientia 34: 173–175CrossRefGoogle Scholar
  17. Flood, P. R. (1981). On the ultrastructure of mucus. Biomed. Res. (Suppl.) 2: 49–53Google Scholar
  18. Flood, P. R. (1982). Transport speed of the mucous feeding filter inClavelina lepadiformis (Aplousobranchiata, Tunicata). Acta zool., Stockh. 63: 17–23Google Scholar
  19. Flood, P. R. (1983). The gelatinous house ofOikopleura dioica (Appendicularia, Tunicata); its architecture and water filtration mechanism. Program/Abstracts — the Western society of naturalists 64: p. 18Google Scholar
  20. Flood, P. R. (1991a). A simple technique for the preservation and staining of the delicate houses of oikopleurid tunicates. Mar. Biol. 108: 105–110CrossRefGoogle Scholar
  21. Flood, P. R. (1991b). Yellow-stained oikopleurid appendicularians are caused by bacterial parasitism. Mar. Ecol. Prog. Ser. 71: 291–295Google Scholar
  22. Flood, P. R., Deibel, D., Morris, C. C. (1990). Visualization of the transparent gelatinous house of the pelagic tunicateOikopleura vanhoeffeni usingSepia ink. Biol. Bull. mar. biol. Lab., Woods Hole 178: 118–125Google Scholar
  23. Flood, P. R., Deibel, D., Morris, C. C. (submitted). Filtration of colloidal melanin from seawater by the planktonic tunicateOikopleura vanhoeffeni. Nature, Lond.Google Scholar
  24. Flood, P. R., Fiala-Medioni, A. (1979). Filter characteristics of ascidian food trapping mucous films. Acta zool., Stockh. 60: 271–272Google Scholar
  25. Flood, P. R., Fiala-Medioni, A. (1981). Ultrastructure and histochemistry of the food trapping mucous film in benthic filterfeeders (Ascidians). Acta zool., Stockh. 62: 53–65Google Scholar
  26. Fol, H. (1872). Etudes sur des Appendiculaires du Detroit de Messine. Mém. Soc. Phys. Hist. nat. Genève 21(2): 445–499Google Scholar
  27. Galt, C. P., Sykes, P. F. (1983). Sites of bioluminescence in the appendiculariansOikopleura dioica andO. labradoriensis. Mar. Biol. 77: 155–159CrossRefGoogle Scholar
  28. Gore, R. (1990). Between Monterey tides. Natn. Geogr. 177: 125–134Google Scholar
  29. Gorsky, G. (1980). Optimisation des cultures d'Appendiculaires. Approche du metabolisme deO. dioica. Ph.D. thesis. Univ. P. & M. Curie, ParisGoogle Scholar
  30. Gorsky, G., Palazzoli, I., Fenaux, R. (1987). Influence of temperature changes on oxygen uptake and ammonia and phosphate excretion, in relation to body size and weight, inOikopleura dioica (Appendicularia). Mar. Biol. 94: 191–201CrossRefGoogle Scholar
  31. Hemenz, P. C. (1986). Principles of colloid and surface chemistry, 2nd edn. Marcel Dekker, Inc., New YorkGoogle Scholar
  32. Isao, K., Hara, S., Terauchi, K., Kogure, K. (1990). Role of sub-micrometer particles in the ocean. Nature, Lond. 345: 242–244Google Scholar
  33. Ikeda, T. (1974). Nutritional ecology of marine zooplankton. Mem. Fac. Fish. Hokkaido Univ. 22: 1–97Google Scholar
  34. Jørgensen, C. B. (1966). The biology of suspension feeding. Pergamon, London, p. 121–126Google Scholar
  35. Jørgensen, C. B. (1984). Effect of grazing: metazoan suspension feeders. In: Hobbie, J. E., Williams, P. J. I. (eds.) Heterotrophic activity in the sea. Plenum Press, New York, p. 445–464Google Scholar
  36. Kepkay, P. E., Johnson, D. B. (1988). Microbial response to organic particle generation by surface coagulation in sea water. Mar. Ecol. Prog. Ser. 48: 193–198Google Scholar
  37. King, K. R., Hollibaugh, J. T., Azam, F. (1980). Predator—prey interactions between the larvaceanOikopleure dioica and bacterioplankton in enclosed water columns. Mar. Biol. 56: 49–57CrossRefGoogle Scholar
  38. Klaatsch, H. (1895). Über Kernveränderungen im Ektoderm der Appendicularien bei der Gehäusebildung. Morph. Jb. 23: 142–144Google Scholar
  39. Knoechel, R., Flynn, D. S. (1989). Clearance rates ofOikopleura in cold coastal Newfoundland waters: a predictive model and its trophodynamic implications. Mar. Ecol. Prog. Ser. 53: 257–266Google Scholar
  40. Körner, W. F. (1952). Untersuchungen über die Gehäusebildung bei Appendicularien (Oikopleura dioica Fol). Z. Morph. Ökol. Tiere 41: 1–53CrossRefGoogle Scholar
  41. Lohmann, H. (1896). Die Appendicularien der Expedition (Zoologische Ergebnisse der Groenlandexpedition). Bibliotheca zool. 20: 25–44Google Scholar
  42. Lohmann, H. (1899). Das Gehäuse der Appendicularien, sein Bau, seine Funktion und Entstehung. Schr. Naturw. Ver. Schleswig-Holstein 11: 347–407Google Scholar
  43. Lohmann, H. (1915). Tunicata. Handwörterbuch der Naturwissenschaften, Vol. 10. G. Fischer, Jena, p. 57–90Google Scholar
  44. Lohmann, H. (1933/1956). Erste Klasse der Tunicaten Appendiculariae. In: Kükenthal, W., Krumbach, T. (eds.) Handbuch der Zoologie, Vol. 5, part 2. Walter de Gruyter, Berlin, p. 15–202Google Scholar
  45. Mertens, H. (1830). Beschreibung derOikopleura, einer neuen Molluskengattung. Mém. Acad. imp. Sci. St. Petersbourg 1: 205–220Google Scholar
  46. Paffenhöfer, G. A. (1976). On the biology of Appendicularia of the south eastern North Sea. Proc. 10th Eur. mar. Biol. Symp. 2: 437–455 [Persone, G., Jaspers, E. (eds.) Universa Press, Wetteren, Belgium]Google Scholar
  47. Riisgård, H. U. (1988). The ascidian pump: properties and energy cost. Mar. Ecol. Prog. Ser. 47: 129–134Google Scholar
  48. Vogel, S. (1981). Life in moving fluids. Willard Grant Press, BostonGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • P. R. Flood
    • 1
  1. 1.Institute of AnatomyUniversity of BergenBergenNorway

Personalised recommendations