Marine Biology

, Volume 111, Issue 1, pp 71–79 | Cite as

Genetic population structure of the southern oyster drillStramonita (=Thais)haemostoma

  • L. L. Liu
  • D. W. Foltz
  • W. B. Stickle


Nine collections in the southeastern USA of the thaidid molluscStramonita haemastoma, comprising 963 individuals, were made between June 1988 and November 1989, and examined for allozyme variation at 18 electrophoretically-detected loci. Two genetically-differentiated groups were identified and are referred to ascanaliculata-like andfloridana-like snails, based on previously-described subspecies ofS. haemastoma. The two groups were differentiated genetically at a level that is characteristic of congeneric species in other molluscan taxa. The two groups maintained their genetic differences in areas of sympatry, although rare hybrid individuals occurred (about 1.2% of the total set). Shell and radular characters showed little variation within or between the two groups. Within each group, allozyme allele frequencies showed little geographic variation across distances as great as 1 500 km. This result is consistent with the suggestion that species with planktonic larvae (such asS. haemastoma) should have higher rates of gene flow than related brooding species.


Allele Frequency Gene Flow Population Structure Genetic Population Genetic Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Abbott, R. T. (1974). American seashells; the marine Mollusca of the Atlantic and Pacific coasts of North America. Van Nostrand Reinhold Co., New YorkGoogle Scholar
  2. Andrews, J. (1977). Shells and shores of Texas. University of Texas Press, AustinGoogle Scholar
  3. Bandel, K. (1984). The radulae of Caribbean and other Mesogastropoda and Neogastropoda. Zool. Verh., Leiden 214: 1–188Google Scholar
  4. Barton, N. H., Hewitt, G. M. (1983). Hybrid zones as barriers to gene flow. In: Oxford, G. S., Rollinson, D. (eds.) Protein polymorphism: adaptive and taxonomic significance. Academic Press, London, p. 341–359Google Scholar
  5. Bert, T. M. (1986). Speciation in western Atlantic stone crabs (genusMenippe): the role of geological processes and climatic events in the formation and distribution of species. Mar. Biol. 93: 157–170CrossRefGoogle Scholar
  6. Butler, P. A. (1954). The southern oyster drill. Proc. natn. Shellfish. Ass. 44: 67–75Google Scholar
  7. Burton, R. S. (1983). Protein polymorphisms and genetic differentiation of marine invertebrate populations. Mar. Biol. Lett. 4: 193–206Google Scholar
  8. Chambers, S. M. (1978). An electrophoretically detected sibling species of “Goniobasis floridensis” (Mesogastropoda: Pleuroceridae). Malacologia 17: 157–162Google Scholar
  9. Clench, W. J. (1947). The generaPurpura andThais in the western Atlantic. Johnsonia 2: 61–91Google Scholar
  10. Crisp, D. J. (1978). Genetic consequences of different reproductive strategies in marine invertebrates. In: Battaglia, B., Beardmore, J. A. (eds.) Marine organisms: genetics, ecology, and evolution. Plenum Press, New York, p. 257–273Google Scholar
  11. Day, A. J., Bayne, B. L. (1988). Allozyme variation in populations of the dog-whelkNucella lapillus (Prosobranchia: Muricacea) from the South West peninsula of England. Mar. Biol. 99: 93–100CrossRefGoogle Scholar
  12. Grant, W. S., Utter, F. M. (1988). Genetic heterogeneity on different geographic scales inNucella lamellosa (Prosobranchia, Thaididae). Malacologia 28: 275–287Google Scholar
  13. Gunter, G. (1979). Studies of the southern oyster borer,Thais haemastoma. Gulf Res. Rep. 6: 249–260Google Scholar
  14. Hedgecock, D. (1986). Is gene flow from pelagic larval dispersal important in the adaptation and evolution of marine invertebrates? Bull. mar. Sci. 39: 550–564Google Scholar
  15. Hickman, C. S. (1980). Gastropod radula and the assessment of form in evolutionary paleontology. Paleobiology 6: 276–294Google Scholar
  16. Highsmith, R. C. (1985). Floating and algal rafting as potential dispersal mechanisms in brooding invertebrates. Mar. Ecol. Prog. Ser. 25: 169–179Google Scholar
  17. Janson, K. (1987). Allozyme and shell variation in two marine snails (Littorina, Prosobranchia) with different dispersal abilities. Biol. J. Linn. Soc. 30: 245–256Google Scholar
  18. Johannesson, K. (1988). The paradox of Rockall: why is a brooding gastropod (Littorina saxatilis) more widespread than one having a planktonic larval dispersal stage (L. littorea)? Mar. Biol. 99: 507–513CrossRefGoogle Scholar
  19. Johnson, C. W. (1934). List of the marine molluscs of the Atlantic coast from Labrador to Texas. Proc. Boston Soc. nat. Hist. 40: p. 118Google Scholar
  20. Jokiel, P. L. (1990). Long-distance dispersal by rafting: reemergence of an old hypothesis. Endeavour (New Ser.) 14: 66–73CrossRefGoogle Scholar
  21. Kool, S. P. (1987). Significance of radular characters in reconstruction of thaidid phylogeny (Neogastropoda: Muricacea). Nautilus 101: 117–132CrossRefGoogle Scholar
  22. Kool, S. P. (1989). Phylogenetic analysis of the subfamily Thaidinae (Prosobranchia: Neogastropoda: Muricidae). Ph. D. dissertation. George Washington University, Washington, DCGoogle Scholar
  23. Kwast, K. E., Foltz, D. W., Stickle, W. B. (1990). Population genetics and systematics of theLeptasterias hexactis (Echinodermata: Asteroidea) species complex. Mar. Biol. 105: 477–489CrossRefGoogle Scholar
  24. Liu, L. L. (1990). Genotypic and phenotypic variations of the southern oyster drills,Stramonita canaliculata andS. haemastoma floridana to salinity. Ph.D. dissertation. Louisiana State University, Baton RougeGoogle Scholar
  25. Manwell, C., Baker, C. M. A. (1963). A sibling species of sea-cucumber discovered by starch gel electrophoresis. Comp. Biochem. Physiol. 10: 39–53CrossRefPubMedGoogle Scholar
  26. McDonald, J. H., Koehn, R. K. (1988). The musselsMytilus galloprovincialis andM. trossulus on the Pacific coast of North America. Mar. Biol. 99: 111–118CrossRefGoogle Scholar
  27. Munksgaard, C. (1990). Electrophoretic separation of morphologically similar species of the genusRissoa (Gastropoda: Prosobranchia). Ophelia 31: 97–104Google Scholar
  28. Murphy, P. G. (1978).Collisella austrodigitalis sp. nov.: a sibling species of limpet (Acmaeidae) discovered by electrophoresis. Biol. Bull. mar. biol. Lab., Woods Hole 155: 193–206Google Scholar
  29. Murphy, R. W., Sites, J. W., Buth, D. G., Haufler, C. H. (1990). Proteins. I: Isozyme electrophoresis. In: Hillis, D. M., Moritz, C. (eds.) Molecular systematics. Sinauer, Sunderland, Massachusetts, p. 45–126Google Scholar
  30. Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, Austin, Tex. 89: 583–590Google Scholar
  31. O'Foighil, D., Eernisse, D. J. (1988). Geographically widespread, non-hybridizing, sympatric strains of the hermaphroditic, brooding clamLasaea in the northeastern Pacific Ocean. Biol. Bull. mar. biol. Lab., Woods Hole 175: 218–229Google Scholar
  32. Palmer, A. R., Gayron, S. D., Woodruff, D. S. (1990). Reproductive, morphological, and genetic evidence for two cryptic species of northeastern PacificNucella. Veliger 33: 325–338Google Scholar
  33. SAS Institute, Inc. (1985). SAS user's guide: statistics. Version 5 ed. SAS Institute, Inc., Cary, North CarolinaGoogle Scholar
  34. Scheltema, R. S. (1971). Larval dispersal as a means of genetic exchange between geographically separated populations of shallow-water benthic marine gastropods. Biol. Bull. mar. biol. Lab., Woods Hole 140: 284–322Google Scholar
  35. Schopf, T. J. M., Murphy, L. S. (1973). Protein polymorphism of the hybridizing seastarsAsterias forbesi andAsterias vulgaris and implications for their evolution. Biol. Bull. mar. biol. Lab., Woods Hole 145: 589–597Google Scholar
  36. Sieling, F. W. (1960). A notable range extension of the southern drill,Thais haemastoma floridana, into Chincoteague Bay. Chesapeake Sci. 1: 212–215Google Scholar
  37. Sneath, P. H. A., Sokal, R. R. (1973). Numerical taxonomy — the principles and practice of numerical classification. W. H. Freeman & Co., San FranciscoGoogle Scholar
  38. Spight, T. M. (1977). Latitude, habitat, and hatching type for muricacean gastropods. Nautilus 91: 67–71Google Scholar
  39. St. Amant, L. S. (1938). Studies on the biology of the Louisiana oyster drillThais floridana haysae Clench. M. S. thesis. Louisiana State University, Baton RougeGoogle Scholar
  40. Staub, K. C., Woodruff, D. S., Upatham, E. S., Viyanant, V. (1990). Genetic variation inNeotricula aperta, the intermediate snail host ofSchistosoma mekongi: allozyme differences reveal a group of sibling species. Am. malac. Bull. 7: 93–103Google Scholar
  41. Steiner, W. W. M., Lisowski, E. A., Osterbur, D. (1977). Biochemical differences in sympatric color morphs of an aquatic isopod (Asellus brevicauda). Comp. Biochem. Physiol. 56B: 371–374Google Scholar
  42. Strathmann, R. R., Strathmann, M. F., Emson, R. H. (1984). Does limited brood capacity link adult size, brooding, and simultaneous hermaphroditism? A test with the starfishAsterina phylactica. Am. Nat. 123: 796–818CrossRefGoogle Scholar
  43. Thorpe, J. P., Beardmore, J. A., Ryland, J. S. (1978). Genetic evidence for cryptic speciation in the marine bryozoanAlcyonidium gelatinosum. Mar. Biol. 49: 27–32CrossRefGoogle Scholar
  44. Tuttle, R. D., Lindahl, R. (1980). Genetic variability in 3 co-occurring forms of the starfish genusOthilia (=Echinaster). Experientia 36: 923–925CrossRefGoogle Scholar
  45. Walker, R. L. (1982). The gastropodThais haemastoma in Georgia:T. h. floridana orT. h. canaliculata? Gulf Res. Rep. 7: 183–184Google Scholar
  46. Weir, B. S., Cockerham, C. C. (1984). EstimatingF-statistics for the analysis of population structure. Evolution 38: 1358–1370Google Scholar
  47. Wiley, E. O. (1981). Phylogenetics — the theory and practice of phylogenetic systematics. John Wiley & Sons, New YorkGoogle Scholar
  48. Williams, A. B., Felder, D. L. (1986). Analysis of stone crabs:Menippe mercenaria (Say), restricted, and a previously unrecognized species described (Decapoda: Xanthidae). Proc. biol. Soc. Wash. 99: 517–543Google Scholar
  49. Woodruff, D. S., Staub, K. C., Upatham, E. S., Viyanant, V., Yuan, H.-C. (1988). Genetic variation inOncomelania hupensis:Schistosoma japonicum transmitting snails in China and the Philippines are distinct species. Malacologia 29: 347–361Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • L. L. Liu
    • 1
  • D. W. Foltz
    • 1
  • W. B. Stickle
    • 1
  1. 1.Department of Zoology and PhysiologyLouisiana State UniversityBaton RougeUSA

Personalised recommendations