Skip to main content
Log in

On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier-Stokes equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The compressible and heat-conductive Navier-Stokes equation obtained as the second approximation of the formal Chapman-Enskog expansion is investigated on its relations to the original nonlinear Boltzmann equation and also to the incompressible Navier-Stokes equation. The solutions of the Boltzmann equation and the incompressible Navier-Stokes equation for small initial data are proved to be asymptotically equivalent (mod decay ratet −5/4) ast→+∞ to that of the compressible Navier-Stokes equation for the corresponding initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chapman, S., Cowling, T.: The mathematical theory of non-uniform gases, 3rd ed. London: Cambridge University Press 1970

    Google Scholar 

  2. Ellis, R., Pinsky, M.: The first and second fluid approximations to the linearized Boltzmann equation. J. Math. Pures Appl.54, 125–156 (1975)

    Google Scholar 

  3. Ellis, R., Pinsky, M.: The projection of the Navier-Stokes equations upon the Euler equations. J. Math. Pures Appl.54, 157–181 (1975)

    Google Scholar 

  4. Grad, H.: Asymptotic theory of the Boltzmann equation. Phys. Fluids6, 147–181 (1963)

    Article  Google Scholar 

  5. Grad, H.: Asymptotic theory of the Boltzmann equation. II. In: Rarefied gas dynamics, Vol. 1 (ed. J. Laurmann), pp. 26–59. New York: Academic Press 1963

    Google Scholar 

  6. Grad, H.: Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann equations. Proc. Symp. Appl. Math., Am. Math. Soc.17, 154–183 (1965)

    Google Scholar 

  7. Kawashima, S.: The asymptotic equivalence of the Broadwell model equation and its Navier-Stokes model equation (to appear)

  8. Leray, J.: Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math.63, 193–248 (1934)

    Google Scholar 

  9. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. (in press)

  10. Matsumara, A., Nishida, T.: The initial value problem for the equations of motion of compressible, viscous and heat-conductive fluids. II (to appear in Proc. Jpn. Acad.)

  11. McLennan, J.: Convergence of the Chapman-Enskog expansion for the linearized Boltzmann equation. Phys. Fluids8, 1580–1584 (1965)

    Article  Google Scholar 

  12. Nishida, T.: Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation. Commun. Math. Phys.61, 119–148 (1978)

    Article  Google Scholar 

  13. Nishida, T., Imai, K.: Global solutions to the initial value problem for the nonlinear Boltzmann equation. Publ. Res. Inst. Math. Sci., Kyoto Univ.12, 229–239 (1976)

    Google Scholar 

  14. Pinsky, M.: On the Navier-Stokes approximation to the linearized Boltzmann equation. J. Math. Pures Appl.55, 217–231 (1976)

    Google Scholar 

  15. Ukai, S.: Les solutions globales de l'équation nonlinéaire de Boltzmann dans l'espace tout entier et dans le demi-espace. Compte Rendu Acad. Sci. Paris282 A, 317–320 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Glimm

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawashima, S., Matsumura, A. & Nishida, T. On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier-Stokes equation. Commun.Math. Phys. 70, 97–124 (1979). https://doi.org/10.1007/BF01982349

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01982349

Keywords

Navigation