Communications in Mathematical Physics

, Volume 83, Issue 2, pp 193–212 | Cite as

The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space

II. Completion of proof
  • Douglas M. Eardley
  • Vincent Moncrief


In this paper we complete the proof of global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space by showing that an appropriate norm of the solutions cannot blow up in a finite time. A key step in the proof is the demonstration that theL∞ norm of the curvature is boundeda priori. Our results apply to any compact guage group and to any invariant Higgs self-coupling which is positive and of no higher than quartic degree.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eardley, D. M., Moncrief, V.: Commun. Math. Phys.Google Scholar
  2. 2.
    Segal, I.: J. Funct. Anal.33, 175 (1979)Google Scholar
  3. 3.
    The choice of function spaces made in Ref. [2] was subsequently amended in an erratum (J. Funct. Anal. (to appear)). A more complete treatment of the amended local existence argument has been given by Ginibre, J., Velo, G.: Commun. Math. Phys.82, 1–28 (1981); See also their paper in Phys. Lett.99B, 405 (1981)Google Scholar
  4. 4.
    Jörgens, K.: Math. Z.77, 295 (1961)Google Scholar
  5. 5.
    Cronström, C.: Phys. Lett.90B, 267 (1980)Google Scholar
  6. 6.
    Friedlander, F.: The Wave Equation on a Curved Space-Time, Chap. 4. Cambridge, England: Cambridge University Press 1975Google Scholar
  7. 7.
    Choquet-Bruhat, Y., Christodoulou, D.: Existence of global solutions of the Yang-Mills, Higgs and spinor field equations in 3 + 1 dimensions, preprint (1981). See also Choquet-Bruhat, Y.: C. R. Acad. Sc. Paris292, 153 (1981)Google Scholar
  8. 8.
    Glassey, R., Strauss, W.: Commun. Math. Phys.81, 171–188 (1981)Google Scholar
  9. 9.
    Moncrief, V.: J. Math. Phys.20, 579 (1979)Google Scholar
  10. 10.
    See, for example, John, F.: Partial differential equations, Chap. 5. Berlin, Heidelberg, New York: Springer 1978Google Scholar
  11. 11.
    Jaffe, A., Taubes, C.: Vortices and monopoles: Structure of static gauge theories, Boston: Birkhäuser 1980. See Sect. VI. 6Google Scholar
  12. 12.
    Nirenberg, L.: Ann. Scuola Norm. Sup. Pisa13, 115 (1959)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Douglas M. Eardley
    • 1
    • 2
  • Vincent Moncrief
    • 3
  1. 1.Harvard College ObservatoryHarvard UniversityCambridgeUSA
  2. 2.Institute for Theoretical PhysicsUniversity of California at Santa BarbaraSanta BarbaraUSA
  3. 3.Department of PhysicsYale UniversityNew HavenUSA

Personalised recommendations