Skip to main content
Log in

Perturbation theory for shape resonances and large barrier potentials

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We develop a systematic perturbation and resonance theory for the one-dimensional Schrödinger equation of the form

$$( - d^2 /dx^2 + U(x) + \lambda V(x) - E)\psi (x) = 0,0 \leqq x< \infty ,$$

where the barrier potentialV(x) is supported only wherex≧1 and is non-negative there, and λ is a real parameter tending to infinity. We prove that every λ=∞ eigenvalue turns into a resonance or an eigenvalue for finite λ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bohm, D.: Quantum theory. Englewood Cliffs, NJ: Prentice Hall 1951

    Google Scholar 

  2. Simon, B.: Ann. Math.97, 247–274 (1973)

    Google Scholar 

  3. Landau, L. D., Lifshitz, E. M.: Quantum mechanics. New York: Pergamon Press 1977

    Google Scholar 

  4. Fröman, N., Dammert, Ö.: Nucl. Phys.A147, 627–649 (1970). Drukarev, G., Fröman, N., Fröman, P.-O.: J. Phys.A12, 171–186 (1979)

    Google Scholar 

  5. Harrell, E., Simon, B.: The mathematical theory of resonances whose widths are exponentially small. Duke Math. J.47, 845–902 (1980)

    Google Scholar 

  6. Lavine, R.: Spectral density and sojourn times. In: Atomic Scattering Theory, J. Nuttall (ed.) London, Ontario: Univ. of Western Ontario Press 1978

    Google Scholar 

  7. Coddington, E. A., Levinson, N.: Theory of ordinary differential equations. New York: McGraw-Hill 1955

    Google Scholar 

  8. Hille, E.: Ordinary differential equations in the complex domain. New York: Wiley 1976

    Google Scholar 

  9. Titchmarsh, E. C.: Eigenfunction expansions associated with second-order differential equations, Vol. I. Oxford: At the Clarendon Press 1946

    Google Scholar 

  10. Ashbaugh, M.: Asymptotic perturbation theory for the eigenvalues of Schrödinger operators in a strong coupling limit. Princeton University thesis 1980

  11. Hartman, P.: Ordinary differential equations. Baltimore: Hartman 1973

    Google Scholar 

  12. Olver, F. W. J.: Introduction to asymptotics and special functions. New York: Academic Press 1974

    Google Scholar 

  13. Langer, R. E.: Trans. Am. Math. Soc.34, 447–480 (1932)

    Google Scholar 

  14. Cherry, T. M.: Trans. Am. Math. Soc.68, 224–257 (1950)

    Google Scholar 

  15. Bender, C. M., Orszag, S. A.: Advanced mathematical methods for scientists and engineers. New York: McGraw-Hill 1978

    Google Scholar 

  16. Harrell, E.: On the effect of the boundary conditions on the eigenvalues of ordinary differential equations. Proceedings of the Conference on Ordinary Differential Equations in Honor of Philip Hartman. (to appear) See also: Harrell, E.: The band-structure of a one-dimensional, periodic system in a scaling limit. Ann. Phys. (N. Y.)119, 351–369 (1979)

    Google Scholar 

  17. Abramowitz, M., Stegun, I.: Handbook of mathematical functions, NBS Applied Mathematics Series, Vol. 55. Washington: National Bureau of Standards 1964

    Google Scholar 

  18. Hille, E.: Analytic function theory, Vol. I. Boston: Ginn and Co. 1959

    Google Scholar 

  19. Hille, E.: Analysis, Vol. II. Waltham, Mass.: Blaisdell Publishing Co. 1966

    Google Scholar 

  20. Yamabe, T., Tachibana, A., Silverstone, H. J.: Phys. Rev.A16, 877–890 (1977)

    Google Scholar 

  21. Reed, M., Simon, B.: Methods of modern mathematical physics. Vol IV: Analysis of operators. New York: Academic Press 1978

    Google Scholar 

  22. Erdélyi, A.: Asymptotic expansions. New York: Dover 1956

    Google Scholar 

  23. Chaudhuri, J., Everitt, W. N.: On the spectrum of ordinary second order differential operators. Proc. R. Soc. EdinburghA68, 95–119 (1969)

    Google Scholar 

  24. Baumgärtel, H., Demuth, M.: Decoupling by a projection. Rep. Math. Phys.15, 173–186 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. Simon

Partially supported by USNSF grant MCS 7801885 and a National Science Foundation Graduate Fellowship

Supported by USNSF grant MCS 7926408

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashbaugh, M.S., Harrell, E.M. Perturbation theory for shape resonances and large barrier potentials. Commun.Math. Phys. 83, 151–170 (1982). https://doi.org/10.1007/BF01976039

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01976039

Keywords

Navigation