Skip to main content
Log in

Direct measurement of probenecid and its glucuronide conjugate by means of high pressure liquid chromatography in plasma and urine of humans

  • Articles
  • Published:
Pharmaceutisch Weekblad Aims and scope Submit manuscript

Abstract

Probenecid with its phase-I metabolites, and phase-II glucuronide conjugate can be analysed by a gradient high pressure liquid chromatographic method. Probenecid glucuronide in plasma with pH 7.4 is not stable and declines to 10% of the original value within 6 h (t1/2≈1 h). Probenecid glucuronide is stable in urine with pH 5.0, moderately unstable at pH 6.0 (t1/2≈10 h), and unstable at pH 8.0 (t1/2≈0.5 h). Probenecid glucuronide is stable in water and 0.01 mol/l phosphoric acid in the autosampler of the high pressure liquid chromatograph. The decrease in concentration in water is 5.5% during 9 h and 0% in diluted acid. Probenecid glucuronide and the phase-I metabolites were not detectable in plasma. The main compound in fresh urine is the phase-II conjugate probenecid glucuronide (62% of a 500 mg dose); the phase-I metabolites are present and only a trace of probenecid is present. The percentage of the dose of the phase-I metabolites varies between 5 and 10, while hardly any probenecid is excreted unchanged (0.33%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beyer KH. Functional characteristics of renal transport mechanisms. Pharmacol Rev 1950;2:227–80.

    Google Scholar 

  2. Beyer KH, Russo HF, Tillson EK, Miller AK, Verwey WF, Gass SR. Benemid,p-(di-n-propylsulfamyl)-benzoic acid: its renal affinity and its elimination. Am J Physiol 1951;166:625–40.

    PubMed  Google Scholar 

  3. Gutman AB, Yü TF. Renal function in gout, with a commentary on the renal regulation of urate excretion, and the role of the kidneys in the pathogenesis of gout. Am J Med 1957;23:600–25.

    PubMed  Google Scholar 

  4. Beyer KH. Factors basic to the development of useful inhibitors of renal transport mecahnisms. Arch Int Pharmacodyn 1954;48:97–117.

    Google Scholar 

  5. Cunningham RF, Israeli ZH, Dayton PG. Clinical pharmacokinetics of probenecid. Clin Pharmacokinet 1981;135:135–51.

    Google Scholar 

  6. Dayton PG, Yü TF, Chen W, Berger L, West LA, Gutman AB. The physiological disposition of probenecid, including renal clearance, in man, studied by an improved method for its estimation in biological material. J Pharmacol Exp Ther 1963;140:278–85.

    PubMed  Google Scholar 

  7. Perel JM, Dayton PG, Yü TF, Gutman AB. Studies of the renal excretion of probenecid acyl glucuronidation in man. Eur J Clin Pharmacol 1971;3:106–12.

    Article  Google Scholar 

  8. Roos BE, Wickström G, Hartvig P, Nilsson JLG. Quantitation of CSF concentrations and biological activity of probenecid metabolites. Eur J Clin Pharmacol 1980;17:223–6

    Article  PubMed  Google Scholar 

  9. Israeli ZH, Perel JM, Cunningham RF, Dayton PG, Yü TF, Gutman AB, et al. Metabolites of probenecid. Chemical, physical and pharmacological studies. J Med Chem 1972;15:709–13.

    PubMed  Google Scholar 

  10. Eggers NJ, Doust K. Isolation and identification of probenecid acyl glucuronide. J Pharm Pharmacol 1981;33:123–4.

    PubMed  Google Scholar 

  11. Faed EM. Properties of acyl glucuronides: implications for studies of the pharmacokinetics and metabolism of acidic drugs. Drug Metab Rev 1984;15:1213–49.

    PubMed  Google Scholar 

  12. Hansen-Møller J, Dalgaard L, Hansen SH. Reversed phase HPLC assay for the simultaneous determination of diflunisal and its glucuronides in serum and urine. Rearrangement of the 1-O-acylglucuronide. J Chromatogr/Biomed Appl 1987;420:99–109.

    Article  Google Scholar 

  13. Hasegawa J, Smith PC, Benet LZ. Apparent intramolecular acyl migration of zomepirac glucuronide. Drug Metab Dispos 1982;10:469–73.

    PubMed  Google Scholar 

  14. Smith PC, Hasegawa J, Langendijk PNJ, Benet LZ. Stability of acyl glucuronides in blood, plasma, and urine. Studies with zomepirac. Drug Metab Dispos 1985;13:110–2.

    PubMed  Google Scholar 

  15. Dickinson RG, Hooper WD, Eadie MJ. pH Dependent rearrangement of the biosynthetic ester glucuronide of valproic acid toβ-glucuronidase-resistant forms. Drug Metab Dispos 1984;12:247–52.

    PubMed  Google Scholar 

  16. Dayton PG, Cucinell SA, Weiss M, Perel JM. Dosedependence of drug plasma level decline in dogs. J Pharmacol Exp Ther 1967;158:305–16.

    PubMed  Google Scholar 

  17. Guarino AM, Schanker LS. Biliary excretion of probenecid and its glucuronide. J Pharmacol Exp Ther 1968;164:387–95.

    PubMed  Google Scholar 

  18. Harle RK, Cowen T. Determination of probenecid in serum by high-performance liquid chromatography. Analyst 1978;103:492–6.

    PubMed  Google Scholar 

  19. Tillson EK, Schuchardt GS, Fishman JK, Beyer KH. The determination of probenecid (Benemid®) in body fluids. J Pharmacol Exp Ther 1954;111:385–403.

    PubMed  Google Scholar 

  20. Abernethey DR, Greenblatt DJ, Ameer B, Shader RI. Probenecid impairment of acetaminophen and lorazepam clearance. Direct inhibition of ether glucuronide formation. J Pharmacol Exp Ther 1985;38:121–7.

    Google Scholar 

  21. Gisclon LG, Boyd RA, Williams RL, Giacomini KM. The effect of probenecid on the renal elimination of cimetidine. Clin Pharmacol Ther 1989;45:444–52.

    PubMed  Google Scholar 

  22. De Miranda P, Good SS, Yarchoan R, Thomas RV, Blum MR, Myers CE, et al. Alteration of zidovudine pharmacokinetics by probenecid in patients with AIDS or AIDS-related complex. Clin Pharmacol Ther 1989;46:494–500.

    PubMed  Google Scholar 

  23. Smith PC, Langendijk PNJ, Bosso JA, Benet LZ. Effect of probenecid on the formation and elimination of acyl glucuronides: studies with zomepirac. Clin Pharmacol Ther 1985;38:121–7.

    PubMed  Google Scholar 

  24. Vree TB, Baars AM, Wuis EW. Direct high-pressure liquid chromatographic analysis and preliminary pharmacokinetics of enantiomers of oxazepam and temazepam with their corresponding glucuronide conjugates. Pharm Weekbl [Sci] 1991;13(2):83–91.

    Google Scholar 

  25. Verwey-Van Wissen CPWGM, Koopman-Kimenai PM, Vree TB. Direct determination of codeine, norcodeine, morphine and normorphine with their correspondingO-glucuronide conjugates by high-performance liquid chromatography with electrochemical detection. J Chromatogr/Biomed Appl 1991;570:309–20.

    Article  Google Scholar 

  26. Vree TB, Martea M, Lewin LM. High-performance liquid chromatography of sulfapyridine and its acetyl and glucuronide metabolites in rat and human urine. J Chromatogr/Biomed Appl 1990;18:214–22.

    Google Scholar 

  27. Vree TB, Beneken Kolmer EWJ, Martea M, Bosch R, Shimoda M. High performance liquid chromatography of sulfadimethoxine and its N1-glucuronide, N4-acetyl, and N4-acetyl-N1-glucuronide metabolites in human plasma and urine. J Chromatogr/Biomed Appl 1990;526:119–28.

    Google Scholar 

  28. Vree TB, Beneken Kolmer EWJ, Hekster YA, Shimoda M, Ono M, Miura T. Pharmacokinetics, N1 glucuronidation, and N4-acetylation of sulfa-6-monomethoxine in humans. Biopharmac Drug Dispos 1990;18:852–8.

    Google Scholar 

  29. Vree TB, Beneken Kolmer EWJ, Hekster YA. Pharmacokinetics, N1-glucuronidation, and N4-acetylation of sulfamethomidine in humans. Pharm Weekbl [Sci] 1991;13(5):198–206.

    Google Scholar 

  30. Vree TB, Beneken Kolmer EWJ, Hekster YA. High pressure liquid chromatographic analysis and preliminary pharmacokinetics of sulfaphenazole and its N2-glucuronide and N4-acetyl metabolites in plasma and urine of man. Pharm Weekbl [Sci] 1990;12(6):243–7.

    Google Scholar 

  31. Vree TB, Steegers-Theunissen RPM, Baars AM, Hekster YA. Direct high-performance liquid chromatographic analysis ofp-hydroxyphenyl-phenyl hydantoin glucuronide, the final metabolite of phenytoin, in human serum and urine. J Chromatogr/Biomed Appl 1990;526:581–9.

    Google Scholar 

  32. Sinclair KA, Caldwell J. The formation ofβ-glucuronidase resistant glucuronides by the intramolar rearrangement of glucuronic acid conjugates at mild alkaline pH. Biochem Pharmacol 1982;31:953–7.

    Article  PubMed  Google Scholar 

  33. Illing HPA, Wilson ID. pH Dependent formation ofβ- glucuronidase resistant conjugates from the biosynthetic ester glucuronide of isoxepac. Biochem Pharmacol 1981;30:3381–4.

    Article  PubMed  Google Scholar 

  34. Janssen FW, Kirkman SK, Fenselau C, Stogniew M, Hofmann BR, Young EM, et al. Metabolic formation of N- and O-glucuronides of 3-(p-chlorophenyl)thiazolo [3,2-a]benzimidazole-2-acetic acid. Rearrangement of the 1-O-acyl glucuronide. Drug Metab Dispos 1982;10:599–604.

    PubMed  Google Scholar 

  35. Loewen GR, Macdonald JI, Verbeeck RK. High performance liquid chromatographic method for the simultaneous quantitation of diflunisal and its glucuronide and sulfate conjugates in human urine. J Pharm Sci 1989;78:250–5.

    PubMed  Google Scholar 

  36. Vree TB, Beneken Kolmer EWJ, Wuis EW, Hekster YA. Capacity limited renal glucuronidation of probenecid by humans. A pilot Vmax finding study. Pharm Weekbl [Sci]. In press.

  37. Emanuelsson BM, Paalzow LK. Dose-dependent pharmacokinetics of probenecid in the rat. Biopharm Drug Dispos 1988;9:59–70.

    PubMed  Google Scholar 

  38. Ho JC, Conway WD, Melethil S. Probenecid disposition by parallel Michaelis-Menten and dose dependent pseudo first order processes. J Pharm Sci 1986;75:664–8.

    PubMed  Google Scholar 

  39. Selen A, Amidon GL, Welling PG. Pharmacokinetics of probenecid following oral doses to human volunteers. J Pharm Sci 1982;71:1238–42.

    PubMed  Google Scholar 

  40. Paxton JW. Interaction of probenecid with the protein binding of methotrexate. Pharmacology 1984;28:86–9.

    PubMed  Google Scholar 

  41. Russel FGM, Wouterse AC, Van Ginneken CAM. Physiologically based pharmacokinetic model for the renal clearance of phenolsulfonphthalein and the interaction with probenecid and salicyluric acid in the dog. J Pharmacokinet Biopharm 1987;15:349–68.

    Article  PubMed  Google Scholar 

  42. Spahn H, Iwakawa S, Benet LZ, Lin ET. Influence of probenecid on the urinary excretion rates of the diastereomeric benoxaprofen glucuronides. Eur J Drug Metab Pharmacokinet 1987;12:233–7.

    PubMed  Google Scholar 

  43. Spahn H, Spahn I, Benet LZ. Probenecid-induced changes in the clearance of carprofen enantiomers: a preliminary study. Clin Pharmacol Ther 1989;48:500–5.

    Google Scholar 

  44. Stoeckel K, Dubach UC, McNamara PJ. Effect of probenecid on the elimination and protein binding of ceftriaxone. Eur J Clin Pharmacol 1988;34:151–6.

    Article  PubMed  Google Scholar 

  45. Upton RA, Williams RL, Buskin JN, Jones RM. Effects of probenecid on ketoprofen kinetics. Clin Pharmacol Ther 1982;31:705–12.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vree, T.B., Kolmer, E.W.J.B. Direct measurement of probenecid and its glucuronide conjugate by means of high pressure liquid chromatography in plasma and urine of humans. Pharmaceutisch Weekblad Scientific Edition 14, 83–87 (1992). https://doi.org/10.1007/BF01962691

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01962691

Keywords

Navigation