Pharmaceutisch Weekblad

, Volume 5, Issue 4, pp 131–133 | Cite as

Inhibition of rat brain monoamine oxidase type A by 2- aminotetralin and tetrahydroisoquinoline analogues of dopamine

  • M. G. P. Feenstra
  • T. van der Velden
  • D. Dijkstra
  • O. R. Hommes
  • A. S. Horn
Original Articles


Thein vitro inhibition of rat brain monoamine oxidase type A (Mao-a) by various dopamine analogues is reported and compared to some established inhibitors of the enzyme. The estimated ic50's were found to be in the range 10−5–10−3 mol/1. This makes these compounds more than 10 000 times less potent than the selectiveMao-a inhibitor harmaline and more than 10 times less potent than the selectiveMao-b inhibitors pargyline and deprenyl. When the brain concentrations that are reached after peripheral administration of these drugs are taken into account it is unlikely that inhibition ofMao is relevant to their effects as has been suggested. Also the endogenous brain concentrations of some tetrahydroisoquinolines are probably too low to produce an inhibition of the enzyme.


Public Health Internal Medicine Dopamine Monoamine Monoamine Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    di Chiara G, Balakleevsky A, Porceddu ML, Tagliamonte A, Gessa GL. Inhibition by apomorphine of dopamine deamination in the rat brain. J Neurochem 1974;23:1105–8.PubMedGoogle Scholar
  2. 2.
    Hoffmann IS, Naylor RJ, Cubeddu LX. Presynaptic effects of 2-aminotetralins on striatal dopaminergic neurons. J Pharmacol Exp Ther 1980;215:486–93.PubMedGoogle Scholar
  3. 3.
    Costall B, Lim SK, Naylor RJ, Cannon JG. On the preferred rotameric conformation for dopamine agonist action: an illusory quest? J Pharm Pharmacol 1982;34:246–54.PubMedGoogle Scholar
  4. 4.
    Yamanaka Y. Effect of salsolinol on rat brain and liver monoamine oxidase. Jpn J Pharmacol 1971;21:833–6.PubMedGoogle Scholar
  5. 5.
    Sjöquist B, Magnuson E. Analysis of salsolinol and salsoline in biological samples using deuterium-labelled internal standards and gas chromatography-mass spectrometry. J Chromatogr 1980;183:17–24.PubMedGoogle Scholar
  6. 6.
    Barker SA, Monti JA, Tolbert LC, Brown GB, Christian ST. Gas chromatographic-mass spectrometric evidence for the identification of 6,7-dihy-droxy-1,2,3,4-tetrahydroisoquinoline as a normal constituent of rat brain. Biochem Pharmacol 1981;30:2461–8.CrossRefGoogle Scholar
  7. 7.
    Waldmeier PC, Delini-Stula A, Maître L. Preferential deamination of dopamine by an A type monoamine oxidase in rat brain. Naunyn Schmiedebergs Arch Pharmacol 1976;292:9–14.CrossRefPubMedGoogle Scholar
  8. 8.
    Demarest KT, Moore KE. Type A monoamine oxidase catalyzes the intraneuronal deamination of dopamine within nigrostriatal, mesolimbic, tuberoinfundibular and tuberohypophyseal neurons in the rat. J Neural Transm 1981;52:175–87.CrossRefPubMedGoogle Scholar
  9. 9.
    Feenstra MGP, Rollema H, Horn AS, Dijkstra D, Grol CJ, Westerink BHC, Westerbrink A. Effect of dihydroxy-2-aminotetralin derivatives on dopamine metabolism in the rat striatum. Naunyn Schmiedebergs Arch Pharmacol 1980;310:219–25.CrossRefPubMedGoogle Scholar
  10. 10.
    Westerink BHC, Dijkstra D, Feenstra MGP, Grol CJ, Horn AS, Rollema H, Wirix E. Dopaminergic prodrugs: Brain concentrations and neurochemical effects of 5,6- and 6,7-Adtn after administration as dibenzoyl esters. Eur J Pharmacol 1980;61:7–15.CrossRefPubMedGoogle Scholar
  11. 11.
    Feenstra MGP, Rollema H, Mulder TBA, Westerink BHC, Horn AS. Amperometric detection of low concentrations of dopamine receptor agonists after liquid Chromatographic sample enrichment: Effect of O-methylation on brain concentrations of dipropyl-5,6-Adtn and dipropyl-6,7-Adtn. Life Sci 1983;32:459–65.CrossRefPubMedGoogle Scholar
  12. 12.
    Robinson DS, Lovenberg W, Keiser H, Sjoerdsma A. Effects of drugs on human blood platelet and plasma amine oxidase activity in vitro and in vivo. Biochem Pharmacol 1968;17:109–19.CrossRefPubMedGoogle Scholar
  13. 13.
    Owen F, Bourne RC, Lai JCK, Williams R. The heterogeneity of monoamine oxidase in distinct populations of rat brain mitochondria. Biochem Pharmacol 1977;26:289–92.CrossRefPubMedGoogle Scholar
  14. 14.
    Schoepp DD, Azzaro AJ. Specificity of endogenous substrates for types A and B monoamine oxidase in rat striatum. J Neurochem 1981;36:2025–31.PubMedGoogle Scholar
  15. 15.
    Westerink BHC, Horn AS. Do neuroleptics prevent the penetration of dopamine agonists into the brain? Eur J Pharmacol 1979;58:39–48.CrossRefPubMedGoogle Scholar
  16. 16.
    Demarest KT, Smith DJ, Azzaro AJ. The presence of the type A form of monoamine oxidase within nigrostriatal dopamine-containing neurons. J Pharmacol Exp Ther 1980;215:461–8.PubMedGoogle Scholar
  17. 17.
    Roberts PJ, Davis A.Adtn (2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene): A prototype for possible dopaminergic false transmitters? In: Roberts PJ, Woodruff GN, Iversen LL, red. Dopamine, Advances in Biochemical Psychopharmacology Vol. 19. New York: Raven Press, 1978:177–91.Google Scholar
  18. 18.
    Westerink BHC, Dijkstra D, Feenstra MGP, Horn AS, Rollema H. Selective storage in vivo of 5,6-Adtn in dopamine-rich areas of the rat brain. Eur J Pharmacol 1980;64:115–21.CrossRefPubMedGoogle Scholar
  19. 19.
    Heikkila R, Cohen G, Diembiec D. Tetrahydroisoquinoline alkaloids: Uptake by rat brain homogenates and inhibition of catecholamine uptake. J Pharmacol Exp Ther 1971;179:250–8.PubMedGoogle Scholar
  20. 20.
    Cohen G, Mytilineou C, Barrett RE. 6,7-Dihydroxy-tetrahydroisoquinoline: Uptake and storage by peripheral sympathetic nerve of the rat. Science 1972;175:1269–72.PubMedGoogle Scholar
  21. 21.
    Melchior C, Collins MA. The route and significance of endogenous synthesis of alkaloids in animals.Crc Crit Rev Toxicol 1982;313–56.Google Scholar
  22. 22.
    Collins AC, Cashaw JL, Davis VE. Dopamine-derived tetrahydroisoquinoline alkaloids-inhibitors of neuroamine metabolism. Biochem Pharmacol 1973;22:2337–48.CrossRefPubMedGoogle Scholar
  23. 23.
    Meller E, Friedman J, Schweizer JW, Friedhoff AJ. Tetrahydro-β-carbolines: specific inhibitors of type A monoamine oxidase in rat brain. J Neurochem 1977;28:995–1000.PubMedGoogle Scholar
  24. 24.
    Glover V, Liebowitz J, Armando I, Sandler M. β-Carbolines as selective monoamine oxidase inhibitors: in vivo implications. J Neural Transm 1982;54:209–18.CrossRefPubMedGoogle Scholar

Copyright information

© Royal Dutch Association for Advancement of Pharmacy 1983

Authors and Affiliations

  • M. G. P. Feenstra
    • 1
  • T. van der Velden
    • 1
  • D. Dijkstra
    • 2
  • O. R. Hommes
    • 1
  • A. S. Horn
    • 2
  1. 1.Department of Experimental NeurologySt. Radboud University HospitalHB NijmegenThe Netherlands
  2. 2.Department of PharmacyUniversity of GroningenAW GroningenThe Netherlands

Personalised recommendations