Advertisement

Communications in Mathematical Physics

, Volume 61, Issue 3, pp 293–305 | Cite as

Some limit theorems for random fields

  • Carla C. Neaderhouser
Article

Abstract

We prove a central limit theorem with remainder and an iterated logarithm law for collections of mixing random variables indexed byZ d ,d≧1. These results are applicable to certain Gibbs random fields.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Limit Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deo, C. M.: A note on empirical processes of strong-mixing sequences. Ann. Prob.1, 870–875 (1973)Google Scholar
  2. 2.
    Dobrushin, R. L.: The description of a random field by means of conditional probabilities and conditions of its regularity. Theor. Prob. Appl.13, 197–224 (1968)CrossRefGoogle Scholar
  3. 3.
    Dobrushin, R. L., Tirozzi, B.: The central limit theorem and the problem of equivalence of ensembles. Commun. math. Phys.54, 173–192 (1977)CrossRefGoogle Scholar
  4. 4.
    Hegerfeldt, G. C., Nappi, C. R.: Mixing properties in lattice systems. Commun. math. Phys.53, 1–7 (1977)CrossRefGoogle Scholar
  5. 5.
    Helms, L. L.: Semigroups of operators and interacting particles. (unpublished manuscript)Google Scholar
  6. 6.
    Holley R. A., Stroock, D. W.: Applications of the stochastic Ising model to the Gibbs states. Commun. math. Phys.48, 249–265 (1976)CrossRefGoogle Scholar
  7. 7.
    Lebowitz, J. L., Martin-Löf, A.: On the uniqueness of the equilibrium state for Ising spin systems. Commun. math. Phys.25, 276–282 (1972)CrossRefGoogle Scholar
  8. 8.
    Loève, M.: Probability theory, 3rd ed., Princeton, New Jersey: Van Nostrand 1963Google Scholar
  9. 9.
    Neaderhouser, C. C.: Limit theorems for multiply-indexed mixing random variables, with applications to Gibbs random fields. Ann. Prob.6, 207–215 (1978)Google Scholar
  10. 10.
    Penrose, O., Lebowitz, J. L.: On the exponential decay of correlation functions. Commun. math. Phys.39, 165–184 (1974)CrossRefGoogle Scholar
  11. 11.
    Philipp, W.: The central limit problem for mixing sequences of random variables. Z. Wahrscheinlichkeitstheorie verw. Gebiete12, 155–171 (1969)CrossRefGoogle Scholar
  12. 12.
    Philipp, W.: The remainder in the central limit theorem for mixing stochastic processes. Ann. Math. Statist.40, 601–609 (1969)Google Scholar
  13. 13.
    Philipp, W., Stout, W. F.: Almost sure invariance principles for partial sums of weakly dependent random variables. Am. Math. Soc. Mem. No. 161. Providence, Rhode Island: American Mathematical Society 1975Google Scholar
  14. 14.
    Stout, W. F.: Almost sure convergence. New York: Academic Press 1974Google Scholar
  15. 15.
    Reznik, M. Kh.: The law of the iterated logarithm for some classes of stationary processes. Theor. Prob. Appl.8, 606–621 (1968)CrossRefGoogle Scholar
  16. 16.
    Volkonskii, V. A., Rozanov, Yu. A.: Some limit theorems for random functions I. Theor. Prob. Appl.4, 178–197 (1959)CrossRefGoogle Scholar
  17. 17.
    Wichura, M.: Some Strassen-type laws of the iterated logarithm for multiparameter stochastic processes with independent increments. Ann. Prob.1, 272–296 (1973)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Carla C. Neaderhouser
    • 1
  1. 1.Department of MathematicsTexas A&M UniversityCollege StationUSA

Personalised recommendations