Advertisement

Communications in Mathematical Physics

, Volume 61, Issue 3, pp 239–248 | Cite as

P2 as a gravitational Instanton

  • G. W. Gibbons
  • C. N. Pope
Article

Abstract

We compare some of the properties of ℂP2 with those of the SU(2) Yang-Mills Instanton and conclude that ℂP2 may be regarded as a gravitational pseudoparticle surrounded by an event horizon.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gibbons, G.W., Hawking, S.W.: In preparationGoogle Scholar
  2. 2.
    Hawking, S.W., Pope, C.N.: Phys. Lett.73B, 42 (1978)Google Scholar
  3. 3.
    Eguchi, T., Freund, P.G.O.: Phys. Rev. Letters37, 1251 (1977)CrossRefGoogle Scholar
  4. 4.
    't Hooft, G.: Phys. Rev. D14, 3432 (1976)Google Scholar
  5. 5.
    Berger, M., Gauduchin, P., Mazet, E.: Le spectre d'une variete Riemannienne. In: Lecture notes in mathematics, Vol. 194. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  6. 6.
    Flaherty, E.J.: Hermitian and Kahlerian geometry in relativity. In: Lecture notes in physics, Vol. 46. Berlin-Heidelberg-New York: Springer 1976Google Scholar
  7. 7.
    Plebanski, J., Demianski, M.: Ann. Phys. (N.Y.)98, 98 (1976)CrossRefGoogle Scholar
  8. 8.
    Hawking, S.W.: Phys. Lett. A60, 81 (1977)Google Scholar
  9. 9.
    Gibbons, G.W., Hawking, S.W.: Phys. Rev. D15, 2738 (1977)Google Scholar
  10. 10.
    Kottler, F.: Ann. Phys. (Leipzig)56, 401 (1918)Google Scholar
  11. 11.
    Gibbons, G.W.: Functional integrals in curved spacetime. Preprint (1977)Google Scholar
  12. 12.
    Charap, J., Duff, M.J.: Phys. Lett.69B, 445 (1977); Charap, J., Duff, M.J.: Spacetime topology and a new class of Yang-Mills instantons. Q.M.C. Preprint (July 1977)Google Scholar
  13. 13.
    Eisenhart, L.P.: Continuous groups of transformations. Princeton, NJ: Princeton University Press 1933Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • G. W. Gibbons
    • 1
  • C. N. Pope
    • 1
  1. 1.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeEngland

Personalised recommendations