Advertisement

Communications in Mathematical Physics

, Volume 61, Issue 3, pp 191–208 | Cite as

Correlation-function identities and inequalities for Ising models with pair interactions

  • R. J. Boel
  • P. W. Kasteleyn
Article

Abstract

For Ising models with pair interactions in zero magnetic field a class of linear combinations of products of two correlation functions is studied. We derive sufficient and necessary conditions under which a function in this class is (a) zero for all values of the coupling parameters, or (b) nonnegative for all nonnegative values of the coupling parameters. Examples of correlation-function identities and inequalities of this type are given.

Keywords

Magnetic Field Neural Network Statistical Physic Linear Combination Correlation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Groeneveld, J., Boel, R.J., Kasteleyn, P.W.: Physica (to be published)Google Scholar
  2. 2.
    Wilson, R.J.: Introduction to graph theory. Edinburgh: Oliver and Boyd 1972Google Scholar
  3. 3.
    Harary, F.: Graph theory, pp. 37–38. Reading, Mass.: Addison-Wesley 1969Google Scholar
  4. 4.
    Griffiths, R.B.: Rigorous results and theorems. In: Phase transitions and critical phenomena, Vol. 1 (eds. C. Domb, M. S. Green), pp. 72–74. London: Academic Press 1972Google Scholar
  5. 5.
    Newman, C.: Z. Wahrscheinlichkeitstheorie verw. Gebiete33, 75 (1975)CrossRefGoogle Scholar
  6. 6.
    Sylvester, G.S.: Commun. math. Phys.42, 209 (1975)CrossRefGoogle Scholar
  7. 7.
    Kasteleyn, P.W., Boel, R.J.: (to be published)Google Scholar
  8. 8.
    Kasteleyn, P.W.: Graph theory and crystal physics. In: Graph theory and theoretical physics (ed. F. Harary), p. 43. London: Academic Press 1967Google Scholar
  9. 8a.
    Griffiths, R.B.: J. Math. Phys.8, 484 (1967)CrossRefGoogle Scholar
  10. 9.
    Boel, R.J., Kasteleyn, P.W.: Physica (to be published)Google Scholar
  11. 10.
    Beckenbach, E.F., Bellman, R.: Inequalities. Berlin-Heidelberg-New York: Springer 1961Google Scholar
  12. 11.
    Setô, N.: Progr. Theor. Phys.55, 683 (1976)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • R. J. Boel
    • 1
  • P. W. Kasteleyn
    • 1
  1. 1.Instituut-Lorentz voor Theoretische NatuurkundeRijksuniversiteit LeidenLeidenThe Netherlands

Personalised recommendations