Skip to main content
Log in

Linear spin-zero quantum fields in external gravitational and scalar fields

I. A one particle structure for the stationary case

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give mathematically rigorous results on the quantization of the covariant Klein Gordon field with an external stationary scalar interaction in a stationary curved space-time.

We show how, following Segal, Weinless etc., the problem reduces to finding a “one particle structure” for the corresponding classical system.

Our main result is an existence theorem for such a one-particle structure for a precisely specified class of stationary space-times. Byproducts of our approach are:

  1. 1)

    A discussion of when a given “equal-time” surface in a given stationary space-time is Cauchy.

  2. 2)

    A modification and extension of the methods of Chernoff [3] for proving the essential self-adjointness of certain partial differential operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashtekar, A., Magnon, A.: Quantum fields in curved space-times. Proc. Roy. Soc. Lond. A346, 375–394 (1975)

    Google Scholar 

  2. Bongaarts, P. J. M.: Linear fields according to I. E. Segal. In [24]

    Google Scholar 

  3. Chernoff, P. R.: Essential self-adjointness of powers of generators of hyperbolic equations. J. Funct. Anal.12, 401–414 (1973)

    Google Scholar 

  4. Choquet-Bruhat, Y.: Hyperbolic partial differential equations on a manifold. In: Battelle rencontres (eds. B. S. de Witt, J. A. Wheeler). New York: Benjamin 1967

    Google Scholar 

  5. Cook, J. M.: The mathematics of second quantization. Trans. Am. Math. Soc.74, 222–245 (1953)

    Google Scholar 

  6. DeWitt, B. S.: Quantum theory in curved space-time. Phys. Rept.19, 295–357 (1975)

    Google Scholar 

  7. Dieudonné, J.: Foundations of modern analysis. New York-London Academic Press 1969

    Google Scholar 

  8. Fulling, S. A.: Nonuniqueness of canonical field quantization in Riemannian space-time. Phys. Rev. D7, 2850–2862 (1973)

    Google Scholar 

  9. Geroch, R.: Domain of dependence. J. Math. Phys.11, 437–449 (1970)

    Google Scholar 

  10. Hawking, S., Ellis, G.: The large scale structure of space-time. Cambridge: Cambridge University Press 1973

    Google Scholar 

  11. Helgason, S.: Differential geometry and symmetric spaces. New York-London: Academic Press 1962

    Google Scholar 

  12. Isham, C. J.: Quantum field theory in curved space-time, an Overview. In: 8th Texas Symposium on Relativistic Astrophysics. Imperial College Preprint ICTP/76/5 (Jan. 1977)

  13. Kay, B. S.: Ph. D. Thesis, London (1977)

  14. Klein, A.: Quadratic expressions in a free bose field. Transact. Am. Math. Soc.181, 439–456 (1973) and in [24]

    Google Scholar 

  15. Leray, J.: Hyperbolic partial differential equations. Princeton lecture notes. Princeton: Princeton University 1952 (mimeographed)

    Google Scholar 

  16. Lichnerowicz, A.: Propagateurs et commutateurs en relativité générale. Publ. I.H.E.S.10 (1961)

  17. Misner, C., Thorne, K., Wheeler, J. A.: Gravitation. San Francisco-London: Freeman 1973

    Google Scholar 

  18. Nelson, E.: Analytic vectors. Ann. Math.70, 572–614 (1959)

    Google Scholar 

  19. Reed, M., Simon, B.: Methods of modern mathematical physics, Vols. I and II. New York-London: Academic Press 1972/75

    Google Scholar 

  20. Rudin, W.: Functional analysis. New York: McGraw Hill 1973

    Google Scholar 

  21. Segal, I. E.: Mathematical characterization of the physical Vacuum. Ill. J. Math.6, 506–523 (1962)

    Google Scholar 

  22. Segal, I. E.: Representations of the canonical commutation relations. In: Cargèse lectures on theoretical physics. New York: Gordon and Breach 1967

    Google Scholar 

  23. Segal, I. E.: Symplectic structures and the quantization problem for wave equations. In: Symposia mathematica, Vol. XIV. New York-London: Academic Press 1974

    Google Scholar 

  24. Streater, R. F. (ed.): Mathematics of contemporary physics. New York-London: Academic Press 1972

    Google Scholar 

  25. Weinless, M.: Existence and uniqueness of the vacuum for linear quantized fields. J. Funct. Anal.4, 350–379 (1969)

    Google Scholar 

  26. Carter, B.: J. Gen. Relativity and Gravitation (to be published)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. Haag

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kay, B.S. Linear spin-zero quantum fields in external gravitational and scalar fields. Commun.Math. Phys. 62, 55–70 (1978). https://doi.org/10.1007/BF01940330

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01940330

Keywords

Navigation