Skip to main content
Log in

Area in phase space as determiner of transition probability: Bohr-Sommerfeld bands, Wigner ripples, and Fresnel zones

  • Part IV. Invited Papers Dedicated To David Bohm
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We consider an oscillator subjected to a sudden change in equilibrium position or in effective spring constant, or both—to a “squeeze” in the language of quantum optics. We analyze the probability of transition from a given initial state to a final state, in its dependence on final-state quantum number. We make use of five sources of insight: Bohr-Sommerfeld quantization via bands in phase space, area of overlap between before-squeeze band and after-squeeze band, interference in phase space, Wigner function as quantum update of B-S band and near-zone Fresnel diffraction as mockup Wigner function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. See the classic papers by L. Landau and R. Peierls,Z. Phys. 69, 56–69 (1931); N. Bohr and L. Rosenfeld,Mat. Fys. Medd. Dan. Vid. Selsk. 12, no. 8 (1933) and N. Bohr and L. Rosenfeld,Phys. Rev. 78, 794–798 (1950); these papers are reprinted and commented on in J. A. Wheeler and W. H. Zurek, eds.,Quantum Theory and Measurement (Princeton University Press, Princeton, 1983).

    Article  Google Scholar 

  2. D. Bohm,Quantum Theory (Prentice-Hall, Englewood Cliffs, 1951).

    Google Scholar 

  3. See, e.g., W. H. Louisell,Quantum Statistical Properties of Radiation (Wiley, New York, 1973), or in M. Sargent, M. O. Scully, and W. E. Lamb, Jr.,Laser Physics (Addison-Wesley, Reading, 1974).

    Google Scholar 

  4. G. Szegö,Orthogonal Polynomials (American Mathematical Society, New York, 1939).

    Google Scholar 

  5. See, e.g., M. Born, Vorlesungen über Atommechanik, inStruktur der Materie in Einzeldarstellungen, M. Born and J. Franck, eds. (Springer, Berlin, 1925); P. Debye,Physik. Z. 28, 170–174 (1927).

    Google Scholar 

  6. W. Pauli, Die allgemeinen Prinzipien der Wellenmechanik, inHandbuch der Physik, Vol. 24, H. Geiger and K. Scheel, eds. (Springer, Berlin, 1933), or H. A. Kramers,Quantentheorie des Elektrons und der Strahlung, Vol. 2 inHand- und Jahrbuch der Chemischen Physik (Eucken-Wolf, Leipzig, 1938).

    Google Scholar 

  7. According to F. Hund (talk at the Tagung der Deutschen Physikalischen Gesellschaft, Göttingen, 1987), A. Sommerfeld referred to Bohr's correspondence principle during the Bohr Festspiele in Göttingen 1924 as “Bohrs Zauberstab.”

  8. For the application of the area-of-overlap concept to squeezed states, see, e.g., J. A. Wheeler,Lett. Math. Phys. 10, 201–206 (1985); W. Schleich and J. A. Wheeler,Nature 326, 574–577 (1987); W. Schleich and J. A. Wheeler, inThe Physics of Phase Space, by Y. S. Kim and W. W. Zachary, eds. (Springer, New York, 1987), pp. 200–204; W. Schleich and J. A. Wheeler,Verh. Deut. Phys. Ges. (VI) 22, a15.3 (1987); W. Schleich and J. A. Wheeler,J. Opt. Soc. Am. B 4, 1715–1722 (1987).

    Article  Google Scholar 

  9. A paper is in preparation by W. Schleich and J. A. Wheeler on the area-of-overlap concept as applied to Franck-Condon transitions in diatomic molecules.

  10. A. Sommerfeld,Sitzungsber. Münch. Akad. Wiss. (1915) 425–458;ibid. 459–500;Ann. Phys. (Leipzig) 51, 1–167 (1916); M. Planck,Ann. Phys. (Leipzig) 50, 385–418 (1916); P. Ehrenfest,Ann. Phys. (Leipzig) 51, 327–352 (1916).

  11. See, e.g., the reviews by M. Hillery, R. F. O'Connell, M. O. Scully, and E. P. Wigner,Phys. Rep. 106, 121–167 (1984); V. I. Tatarskii,Usp. Fiz. Nauk. 139, 587–619 (1983) [Sov. Phys. USPEKHI 26, 311–327 (1983)]; L. Cohen inFrontiers of Nonequilibrium Statistical Physics, G. Moore and M. O. Scully, eds. (Plenum, New York, 1986), pp. 97–117.

    Article  Google Scholar 

  12. R. F. O'Connell and E. P. Wigner,Phys. Lett. 83A, 145–148 (1981); R. F. O'Connell and A. K. Rajagopal,Phys. Rev. Lett. 48, 525–526 (1982); R. F. O'Connell and D. F. Walls,Nature 312, 257–258 (1984); for an application of this relation to molecular collisions, see H.-W. Lee and M. O. Scully,J. Chem. Phys. 73, 2238–2242 (1980).

    Google Scholar 

  13. See, e.g., J. R. Klauder,Bell Sys. Tech. J. 39, 809–820 (1960).

    Google Scholar 

  14. F. Tricomi,Vorlesungen über Orthogonalreihen (Springer, Berlin, 1955).

    Google Scholar 

  15. The semiclassical limit of the Wigner function has been considered in a multitude of publications; see, for example, E. J. Heller,J. Chem. Phys. 67, 3339–3351 (1977); M. V. Berry,Phil. Trans. Roy. Soc. (London) 287, 237–271 (1977); M. V. Berry and N. L. Balazs,J. Phys. A12, 625–642 (1979); H. J. Korsch,J. Phys. A12, 811–823 (1979); N. L. Balazs and B. K. Jennings,Phys. Rep. 104, 347–391 (1984). It has been pointed out frequently that, for most cases, the Wigner function in the semiclassical limit can be expressed by an appropriately normalized delta function located at the Bohr-Sommerfeld phase space trajectory. For insight into when and why, see especially, J. P. Dahl, inEnergy Storage and Redistribution in Molecules, J. Hinze, ed. (Plenum, New York, 1983), pp. 557–571, and J. P. Dahl, inSemiclassical Descriptions of Atomic and Nuclear Collisions, J. Bang and J. de Boer, eds. (Elsevier, Amsterdam, 1985), pp. 379–394.

  16. W. Schleich, D. F. Walls, and J. A. Wheeler,Phys. Rev. A 38, 1177–1186 (1988).

    Article  Google Scholar 

  17. E. Hecht and A. Zajac,Optics (Addison-Wesley, Reading, 1980).

    Google Scholar 

  18. M. Born and E. Wolf,Principles of Optics (Pergamon Press, London, 1959).

    Google Scholar 

  19. See, e.g., S. Chandrasekhar,Rev. Mod. Phys. 15, 1–89 (1943); reprinted inSelected Papers on Noise and Stochastic Processes, N. Wax, ed. (Dover, New York, 1954).

    Article  Google Scholar 

  20. See, e.g., C. Leubner,Eur. J. Phys. 6, 299–301 (1985) and references therein.

    Article  Google Scholar 

  21. I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series and Products (Academic Press, New York, 1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schleich, W., Walther, H. & Wheeler, J.A. Area in phase space as determiner of transition probability: Bohr-Sommerfeld bands, Wigner ripples, and Fresnel zones. Found Phys 18, 953–968 (1988). https://doi.org/10.1007/BF01909932

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01909932

Navigation