Skip to main content
Log in

The theory of functions of a complex variable under Dirac-Pauli representation and its application in fluid dynamics (I)

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

In this paper:

  1. (A)

    We cast aside the traditional quaternion theory and build up the theory of functions of a complex variable under Dirac-Pauli representation. Thus the multivariate and multidimensional problems become rather simple problems.

  2. (B)

    We simplify the Navier-Stokes equation of incompressible viscous fluid dynamics and the equations group of isentropic aerodynamics by theory of functions of a complex variable under Dirac-Pauli representation. And the above-equations, as central problems of fluid dynamics, are classified as the nonlinear equation with only one complex unknown function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chien Wei-zang and Yeh Kai-yuan,Elasticity, Science Press, Beijing (1956). (in Chinese)

    Google Scholar 

  2. Shen Hui-chuan, Dynamical stress function tensor,Appl. Math. Mech. 3, 6 (1982), 899–904.

    Google Scholar 

  3. Shen Hui-chuan, Dynamical stress function tensor and several homogeneous solutions of elastostatics,J. China University of Science and Technology,14, Supplement 1, JCUST 84016 (1984), 95–102. (in Chinese)

    Google Scholar 

  4. Landau, L. D. and E. M. Lifshitz,Continuum Mechanics, National, Moscow (1954). (in Russian)

    Google Scholar 

  5. Prandtl, L., K. Oswatitsch and K. Wieghardt,Fuhrer durch die strömungslehre, Friedr, Vieweg+sohn, Braunschweig (1969).

    Google Scholar 

  6. Oswatitsch, K.,Gas Dynamics, Academic (1956).

  7. Tsien Hsue-shen,Fundamentals of Gas Dynamics, (ed. by H. W. Emmons) Section A:Equations of Gas Dynamics. Oxford University (1958).

  8. Taninti, T. and K. Nishihara,Nonlinear Waves, Pitman (1983).

  9. Eckhaus, W. and A. van Harten,The Inverse Scattering Transformation and the Theory of Solitons and Introduction Mathematics Studies 50, North-Holland (1981).

  10. Shen Hui-chuan, The relation of von kármán equation for elastic large deflection problem and Schrödinger equation for quantum eigenvalues problem.Appl. Math. Mech.,6, 8 (1985), 761.

    Google Scholar 

  11. Shen Hui-chuan, The Schrödinger equation of thin shell theories,Appl. Math. Mech. 6, 10 (1985), 887–900.

    Google Scholar 

  12. Hua Luo-gen,A first Course in Higher Mathematics,1, 1, Science Press, Beijing (1963), 20. (in Chinese)

    Google Scholar 

  13. Kurosh, A. G.,The Teaching Materiais in General Algebra, Phys. Math. National ed. Moscow (1962). (in Russian)

    Google Scholar 

  14. Kurosh, A. G.,A Course in Higher Algebra, National, Moscow (1950). (in Russian)

    Google Scholar 

  15. Wu Pin-san, Complex number, quaternion, biquaternion,Mathematical Bulletin, 8 (1964), 32. (in Chinese)

    Google Scholar 

  16. Baldaga, V. K.,The All Number, Capital University, (1959). (in Russian)

  17. Hamilton, W. R.,Lectures on Quaternions, Dublin, Hodges and Smith (1853).

    Google Scholar 

  18. Hamilton, W. R.,Elements of Quaternions, Chelsea, N. Y. (1969).

  19. Klein, F.,Elementary Mathematics from an Advanced Standpoint; Arithmetic, Algebra. Analysis, Tr. from the 3rd German ed. by E. R. Hedrick and A. Nöble, Dover. n. d., N. Y. (1924).

    Google Scholar 

  20. Wan Zhi-xian and Yang Jin-gen, Automorphisms of the quaternion unimofular group of two dimensions,Chinese Annals of Math.,2, 3 (1981), 387–397.

    Google Scholar 

  21. Wan Zhi-xian and Yang Jin-gen, Automorphisms of the projective quaternion unimodular group of two dimensions,Chinese Annals of Math. 3, 3 (1982), 395–402.

    Google Scholar 

  22. Branetz, V. N. and E. B. Shmouglevsky,Application of Quaternion in Orientation Problems of Rigid Body, Science, Moscow (1973). (in Russian)

    Google Scholar 

  23. Shen Hui-chuan, The fission of spectrum line of monochoromatic elastic wave,Appl. Math. Mech. 5, 4 (1984), 1509–1519.

    Google Scholar 

  24. Shen Hui-chuan, The solution of deflection of elastic thin plate by the joint action of dynamical lateral pressure, force in central surface and external field on the elastic base,Appl. Math. Mech. 5, 6 (1984), 1791–1801.

    Google Scholar 

  25. Shen Hui-chuan, On the general equations, double harmonic equation and eigen-equation in the problems of ldeal plasticity,Appl. Math. Mech.,7, 1 (1986).

    Google Scholar 

  26. Fung, Y. C.,A first Course in Continuum Mechanics, (2nd ed), Prentice-Hall, Inc. (1977).

  27. Fykhkingolrtz, G. M.,Fundation of Mathematics Analyse, National, tech. theo. Moscow (1956–1957). (in Russian)

  28. Dirac, P. A. M.,The Principle of Quantum Mechanics, Oxford (1958).

  29. Flügge, S.,Practical Quantum Mechanics, Springer-Verlag (1974).

  30. Claude, C-T. et al.,Quantum Mechanics,2 Tr. from French by S. R. Hemldy et al., Wiley, N. Y. (1977).

    Google Scholar 

  31. Duffin, R. J., On the characteristic matrices of covariant systems,Phys. Rev.,54, (1938), 1114.

    Google Scholar 

  32. Kemmer, N., The particle aspect of meson theory,Proc. Roy. Soc.,173 (1939), 91–116.

    Google Scholar 

  33. Kaluza, Th.,Sitzungsber d. Preuss, Akad. d. Wiss. (1921), 966; see P. G. Bergmann,Introduction to the Theory of Relativity, Prentice-Hall (1958).

  34. Theodore von Kármán Anniversary Volume, Pasadena (1941), 212.

  35. Synge, J. L. and Chien Wei-zang, The intrinsic theory of elastic shells and plates,Appl. Mech., Th. von Kármán Annivers Vol. (1941), 103–120.

  36. Shen Hui-chuan, The general solution of peristaltic fluid dynamics,Nature Journal,7, 10 (1984), 799;7, 12 (1984), 940.

    Google Scholar 

  37. Boussinesq, J., Applications des potentiels á létnde de léquilibre et du mouvement des solides élastiques, Paris (1885).

  38. Galerkin, B. G., To the general solution of solve a elasticity for three-dimension use stress and displacement functions, Report Acad. Scien. USSR, group A (1931), 281–286. (in Russian)

  39. Babkovich, B. F., An introduction to some general solutions of fundamental differential equation for static isotropical elastic body,Appl. Math. Mech.,1, 1 (1937) 117–132 (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Chien Wei-zang

So the changes are the Great Pole, and give birth to the, Two Bearings: the Two Bearings give birth to the Four Quadrants, and the Four Quadrants give birth to the Eight Diagrams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hui-chuan, S. The theory of functions of a complex variable under Dirac-Pauli representation and its application in fluid dynamics (I). Appl Math Mech 7, 391–411 (1986). https://doi.org/10.1007/BF01898228

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01898228

Keywords

Navigation