Advertisement

Foundations of Physics

, Volume 17, Issue 11, pp 1113–1130 | Cite as

Erwin Schrödinger's views on gravitational physics during his last years at the University of Vienna and some research ensuing from it

  • Leopold Halpern
Part I. Invited Papers Commemorating the Centenary of the Birth of Erwin Schrödinged

Abstract

The author, who was Schrödinger's assistant during his last years in Vienna, gives an account of Schrödinger's views and activities during that time which lead him to a different approach to research on the relations between gravitation and quantum phenomena. Various features of past research are outlined in nontechnical terms. A heuristic argument is presented for the role of the zero-point energy of massive particles in counteracting gravitational collapse and the formation of horizons. Arguments are presented for the view that progress in describing extreme gravitational phenomena can be achieved by the new outlook obtained from the introduction of the analog of Maxwell's vacuum displacement term with a quasiconstant parameter, rather than from renormalization of special processes, even if this is successful. The results can be expected to be in accord with Schrödinger's conjectures.

A physical interpretation for the change of sign of the differential invariant of Karlhede, Lindström, and Åman at the horizon is suggested.

Some important historical details about Schrödinger are touched upon.

Keywords

Past Research Special Process Massive Particle Physical Interpretation Erwin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Schrödinger, inLouis de Broglie, physicien et penseur (Paris, Michel 1953), pp. 16–32; reproduced inErwin Schrödinger: Collected Papers, Vol. 3, pp. 693–710, also in English.Google Scholar
  2. 2.
    E. Schrödinger,Nuovo Cimento 9(10), 162–170 (1958).Google Scholar
  3. 3.
    C. P. Johnson,Lett. Phys. Rev. 89, 320 (1953).Google Scholar
  4. 4.
    G. Mie,Phys. Z. 21, 651 (1920); W. Alexandrow,Ann. Phys. (Leipzig) 65(4), 675 (1921).Google Scholar
  5. 5.
    E. Schrödinger,Physica 6, 899–912 (1939).Google Scholar
  6. 6.
    L. Rosenfeld,Ann. Phys. (Leipzig) 5, 311 (1930).Google Scholar
  7. 7.
    E. Schrödinger,Proc. R. Irish Acad. A 46, 25–47 (1940).Google Scholar
  8. 8.
    Leopold Halpern,Nuovo Cimento 25, 1239 (1962).Google Scholar
  9. 9.
    Leopold Halpern,Ark. Fys. 34, 539–559 (1967);J. Gen. Relativ. Gravit. 3, 405–407 (1971).Google Scholar
  10. 10.
    E. Schrödinger,Expanding Universes (Cambridge University Press, Cambridge, 1957), Chap. 1, p. 20.Google Scholar
  11. 11.
    Leopold Halpern, inOndes et Radiations Gravitationelles, CNRS Paris Colloque Nr. 220, 373–378 (1973).Google Scholar
  12. 12.
    Leopold Halpern, Poster presented at the Schrödinger Centenary Meeting, Imperial College, London, March 1987.Google Scholar
  13. 13.
    Leopold Halpern,Google Scholar
  14. 14.
    Leopold Halpern,Ark. Fys. 35, 57–69 (1967).Google Scholar
  15. 15.
    B. DeWitt and R. Brehme,Ann. Phys. (New York) 9, 220–253 (1960).Google Scholar
  16. 16.
    L. Halpern and B. Laurent,Nuovo Cimento 33(10), 728 (1964).Google Scholar
  17. 17.
    S. Weinberg,Phys. Rev. 140B, 516 (1965).Google Scholar
  18. 18.
    Leopold Halpern and B. Jouvet,Ann. Inst. Henri Poincaré A VIII, 25 (1968).Google Scholar
  19. 19.
    L. Rosenfeld,Nucl. Phys. 40, 353–356 (1963).Google Scholar
  20. 20.
    B. DeWitt, Thesis, Harvard University, 1952.Google Scholar
  21. 21.
    R. P. Feynman,Lectures on Gravitation, 1962–1963 (California Institute of Technology, 1971) and many previous lectures since 1952.Google Scholar
  22. 22.
    S. N. Gupta,Proc. Phys. Soc. A 65, 161, 608 (1952).Google Scholar
  23. 23.
    W. Thirring,Ann. Phys. (New York) 16, 96–117 (1961).Google Scholar
  24. 24.
    R. Utiyama and B. DeWitt,J. Math. Phys. 3, 608 (1962);Phys. Rev. 125, 1727 (1962).Google Scholar
  25. 25.
    H. G. B. Casimir,Proc. K. Ned. Acad. Wet. 51, 793 (1948).Google Scholar
  26. 26.
    L. Halpern, unpublished; R. Gable, Master's Thesis, University of Windsor, Windsor, Canada, 1970.Google Scholar
  27. 27.
    E. Meyers,Phys. Rev. Lett. 59, 165–168 (1987).Google Scholar
  28. 28.
    S. Hawkings and G. Ellis,The Large-Scale Structure of Space-Time (Cambridge University Press, Cambridge, 1971).Google Scholar
  29. 29.
    A. Papapetrou,Proc. R. Irish Acad. 52, 1683 (1954).Google Scholar
  30. 30.
    S. N. Gupta,Phys. Rev. 96, 1683 (1959).Google Scholar
  31. 31.
    L. Halpern,Proceedings, Conference on Differential Geometry and Physics, Bonn, 1972, Mimeographed Volume of Organizers.Google Scholar
  32. 32.
    A. Karlhede, U. Lindstrom, and J. Aaman,J. Gen. Relativ. Gravit. 14, 569–571 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Leopold Halpern
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadena

Personalised recommendations