Advertisement

Foundations of Physics

, Volume 16, Issue 3, pp 227–248 | Cite as

Professor wheeler and the crack of doom: Closed cosmologies in the 5-d Kaluza-Klein theory

  • Richard A. Matzner
  • Anthony Mezzacappa
Part II. Invited Papers Dedicated To John Archibald Wheeler

Abstract

We study the classical and the quantum structures of certain 5-d Kaluza-Klein cosmologies. These models were chosen because their 4-d restriction is a closed, radiation-dominated, homogeneous, isotropic cosmology in the usual sense. The extra (field) dimension is taken to be a circle. In these models the solution starts from a 5-d curvature singularity with infinite circumference for the circle and zero volume for the 3-space. It evolves in finite proper time to a solution with zero dimension for the extra field direction. In the 5-vacuum case this is not a curvature singularity, but is a singularity of the congruence describing the physics, and in particular, the solution cannot causally be extended to the future of this point. In the 5-vacuum case this event coincides with the maximum of expansion of the 5-space. In the 5-dust cases, this point is a real 5-d curvature singularity. By adjustment it can be made to occur before or after the maximum of 3-expansion. The solution stops at that instant, but the 4-cosmology revealsno pathology up to the crack of doom. The quantum behavior is identical in these respects to the classical one.

Keywords

Proper Time Field Direction Usual Sense Curvature Singularity Quantum Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. W. Hawking,Proc. R. Soc. London A 300, 182 (1967); R. Penrose,Phys. Rev. Lett. 14, 57 (1965).Google Scholar
  2. 2.
    C. W. Misner,Phys. Rev. 186, 1319 (1969).CrossRefGoogle Scholar
  3. 3.
    Th. Kaluza, Sitzingsber,Preuss. Akad. Wiss. Phys. Math. Kl., 966 (1921); O. Klein,Z. Phys. 37, 895 (1926).Google Scholar
  4. 4.
    X. M. Hu and Z. C. Wu,Phys. Lett. B 149, 87 (1984).CrossRefGoogle Scholar
  5. 5.
    R. Arnowitt, S. Deser, and C. W. Misner,Gravitation: An Introduction to Current Research, L. Witten, ed. (Wiley, New York, 1962), p. 227.Google Scholar
  6. 6.
    R. Kantowski and R. K. Sachs,J. Math. Phys. 7, 443 (1966).CrossRefGoogle Scholar
  7. 7.
    M. Ryan,Hamiltonian Cosmology (Springer-Verlag, New York, 1972), p. 39.Google Scholar
  8. 8.
    A. Chodos and S. Detweiler,Phys. Rev. D 21, 2167 (1980).CrossRefGoogle Scholar
  9. 9.
    D. Lorenz-Petzold,Phys. Lett. B 149, 79 (1984).CrossRefGoogle Scholar
  10. 10.
    H. Ishihara, K. Tomita, and H. Nariai,Prog. Theor. Phys. 71, 859 (1984).Google Scholar
  11. 11.
    H. Ishihara,Prog. Theor. Phys. 72, 376 (1984).Google Scholar
  12. 12.
    C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation (Freeman, San Francisco, 1973), p. 734.Google Scholar
  13. 13.
    P. Candelas and S. Weinberg,Nucl. Phys. B 237, 397 (1984).CrossRefGoogle Scholar
  14. 14.
    S. Randjbar-Daemi, A. Salam, and J. Strathdee,Phys. Lett. 135B, 388 (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Richard A. Matzner
    • 1
  • Anthony Mezzacappa
    • 1
  1. 1.Center for Relativity and Physics DepartmentThe University of Texas at AustinAustin

Personalised recommendations