Skip to main content
Log in

Reality in neutron interference experiments

  • Part IV. Invited Papers Dedicated To Louis De Broglie
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The wave-particle dualism becomes very obvious in matter wave interference experiments. Neutron interferometers based on wave front and amplitude division have been developed in the past. Most experiments have been performed with the perfect crystal neutron interferometer, which provides widely separated coherent beams allowing new experiments in the field of fundamental, nuclear, and solid-state physics. A nondispersive sample arrangement and the difference of stochastic and deterministic absorption have been investigated. In case of a deterministic absorption process the attenuation of the interference pattern is proportional to the beam attenuation, whereas in case of stochastic absorption it is proportional to the square root of the attenuation. This permits the formulation of Bell-like inequalities which will be discussed in detail. The verification of the symmetry of spinors and of the quantum mechanical spin-superposition experiment on a macroscopic scale are typical examples of interferometry in spin space. These experiments were continued with two resonance coils in the beams, where the results showed that coherence persists, even if an energy exchange between the neutron and the resonator system occurs with certainty. A quantum beat effect was observed when slightly different resonance frequencies were applied to both beams. In this case, the extremely high energy sensitivity of2.7×10 −19 eV was achieved. This effect can be interpreted as a magnetic Josephson-effect analog. Phase echo systems and experiments with pulsed beams show how interference phenomena can be made visible by a proper beam handling inside and behind the interferometer. All the results obtained until now are in agreement with the formalism of quantum mechanics but stimulate the discussion about the interpretation of this basic theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Maier-Leibnitz and T. Springer,Z. Phys. 167 (1962).

  2. R. Gaehler, J. Kalus, and W. Mampe,J. Phys. E13, 546 (1980).

    Google Scholar 

  3. H. Rauch, W. Treimer, and U. Bonse,Phys. Lett. A47, 369 (1974).

    Google Scholar 

  4. W. Bauspiess, U. Bonse, H. Rauch, and W. Treimer,Z. Phys. 271, 177 (1974).

    Google Scholar 

  5. A. I. Ioffe, V. S. Zabiyankan, and G. M. Drabkin,Phys. Lett. 111, 373 (1985).

    Google Scholar 

  6. U. Bonse and M. Hart,Appl. Phys. Lett. 6, 155 (1965).

    Google Scholar 

  7. H. Rauch and D. Petrascheck,Neutron Diffraction, H. Dachs, ed. (Springer, Berlin, 1978), Chap. 9.

    Google Scholar 

  8. V. F. Sears,Can. J. Phys. 56, 1261 (1978).

    Google Scholar 

  9. W. Bauspiess, U. Bonse, and W. Graeff,J. Appl. Crystallogr. 9, 68 (1976).

    Google Scholar 

  10. D. Petrascheck,Acta Phys. Aust. 45, 217 (1976).

    Google Scholar 

  11. M. L. Goldberger and F. Seitz,Phys. Rev. 71, 294 (1947).

    Google Scholar 

  12. V. F. Sears,Phys. Rep. 82, 1 (1982).

    Google Scholar 

  13. U. Bonse and H. Rauch, eds.,Neutron Interferometry (Clarendon Press, Oxford, 1979).

    Google Scholar 

  14. H. Rauch, E. Seidl, D. Tuppinger, D. Petrascheck, and R. Scherm,Z. Phys. B69, 69 (1987).

    Google Scholar 

  15. H. Rauch and J. Summhammer,Phys. Lett. 104A, 44 (1984).

    Google Scholar 

  16. J. Summhammer, H. Rauch, and D. Tuppinger,Phys. Rev. A36, 4447 (1987).

    Google Scholar 

  17. H. Rauch, J. Summhammer, M. Zaxisky, and E. Jericha,Phys. Rev. A42, 3726 (1990).

    Google Scholar 

  18. M. Namiki and S. Pascazio,Phys. Lett. 147, 430 (1990).

    Google Scholar 

  19. J. Bell,Physics 1, 195 (1965).

    Google Scholar 

  20. D. Home and F. Selleri,Rev. Nuovo Cimento 14, 1 (1991).

    Google Scholar 

  21. H. Rauch and J. Summhammer,Phys. Rev. A46, 7284 (1992).

    Google Scholar 

  22. H. Rauch, inProceedings, Third International Symposium on the Foundations of Quantum Mechanics, S. Kobayashiet al., eds. (Physical Society of Japan, Tokyo, 1989), p. 3.

    Google Scholar 

  23. H. Rauch, J. Summhammer, M. Zawisky, and E. Jericha,Phys. Rev. A42, 3726 (1990).

    Google Scholar 

  24. W. K. Wooters and W. H. Zurek,Phys. Rev. D19, 473 (1979).

    Google Scholar 

  25. P. Busch,Found. Phys. 17, 905 (1987).

    Google Scholar 

  26. Y. Aharonov and L. Susskind,Phys. Rev. 158, 1237 (1967).

    Google Scholar 

  27. H. J. Bernstein,Phys. Rev. Lett. 18, 1102 (1967).

    Google Scholar 

  28. G. Eder and A. Zeilinger,Nuovo Cimento 34B, 76 (1976).

    Google Scholar 

  29. H. Rauch, A. Zeilinger, G. Badurek, A. Wilfing, W. Bauspiess, and U. Bonse,Phys. Lett. A54, 425 (1975).

    Google Scholar 

  30. S. A. Werner, R. Colella, A. W. Overhauser, and C. F. Eagen,Phys. Rev. Lett. 35, 1053 (1975).

    Google Scholar 

  31. A. Zeilinger,Nature (London) 294, 544 (1981).

    Google Scholar 

  32. H. J. Bernstein,Nature (London) 315, 42 (1985).

    Google Scholar 

  33. H. Rauch, A. Wilfing, W. Bauspiess, and U. Bonse,Z. Phys. B29, 281 (1978).

    Google Scholar 

  34. M. V. Berry,Proc. R. Soc. London A392, 45 (1984).

    Google Scholar 

  35. T. Bitter and D. Dubbers,Phys. Rev. Lett. 59, 251 (1987).

    Google Scholar 

  36. D. J. Richardson, A. I. Kilvington, K. Green, and S. K. Lamoreaux,Phys. Rev. Lett. 61 2030 (1988).

    Google Scholar 

  37. A. G. Wagh and C. Rakhecha,Phys. Lett. A148, 17 (1990).

    Google Scholar 

  38. J. Summhammer, G. Badurek, H. Rauch, U. Kischko, and A. Zeilinger,Phys. Rev. A27, 2523 (1983).

    Google Scholar 

  39. G. Badurek, H. Rauch, and J. Summhammer,Phys. Rev. Lett. 51, 1015 (1983).

    Google Scholar 

  40. A. Zeilinger, in Ref. 13, p. 241.

    Google Scholar 

  41. E. P. Wigner,Am. J. Phys. 31, 6 (1963).

    Google Scholar 

  42. B. Alefeld, G. Badurek, and H. Rauch,Z. Phys. B41, 231 (1981).

    Google Scholar 

  43. G. M. Drabkin and R. A. Zhitnikov,Sov. Phys. JETP 11, 729 (1960).

    Google Scholar 

  44. F. Bloch and A. Siegert,Phys. Rev. 57, 522 (1940).

    Google Scholar 

  45. H. Kendrick, J. S. King, S. A. Werner, and A. Arott,Nucl. Instrum. Methods 79, 82 (1970).

    Google Scholar 

  46. P. Carruthers and M. M. Nieto,Rev. Mod. Phys. 40, 411 (1968).

    Google Scholar 

  47. R. Jackiw,J. Math. Phys. 9, 339 (1968).

    Google Scholar 

  48. R. J. Glauber,Phys. Rev. 131, 2766 (1963).

    Article  Google Scholar 

  49. M. O. Scully and H. Walther,Phys. Rev. A39, 5229 (1989).

    Google Scholar 

  50. C. Dewdney, P. Gueret, A. Kyprianidis, and J. P. Vigier,Phys. Lett. 102A, 291 (1984).

    Google Scholar 

  51. J. P. Vigier,Pramana 25, 397 (1985).

    Google Scholar 

  52. G. Badurek, H. Rauch, and D. Tuppinger,New Techniques and Ideas in Quantum Measurement Theory (New York Academy of Science, New York, 1986).

    Google Scholar 

  53. G. Badurek, H. Rauch, and D. Tuppinger,Phys. Rev. A34, 2600 (1986).

    Google Scholar 

  54. H. Rauch and J. P. Vigier,Phys. Lett. 151, 269 (1990).

    Google Scholar 

  55. H. Rauch, inSymposium on Foundations of Modern Physics, P. Lahti and P. Mittelstaedt, eds. (World Scientific, Singapore, 1991), p. 347.

    Google Scholar 

  56. B. D. Josephson,Rev. Mod. Phys. 46, 251 (1974).

    Google Scholar 

  57. F. Mezei, ed.,Neutron Spin Echo (Springer, New York, 1980).

    Google Scholar 

  58. G. Badurek, H. Rauch, and A. Zeilinger, in Ref. 57, p. 136.

    Google Scholar 

  59. H. Rauch, in Ref. 13, p. 161.

    Google Scholar 

  60. H. Kaiser, S. A. Werner, and E. A. George,Phys. Rev. Lett. 50, 560 (1983).

    Google Scholar 

  61. R. Clothier, H. Kaiser, S. A. Werner, H. Rauch, and H. Wölwitsch,Phys. Rev. A44, (9) (1990).

  62. M. Heinrich, H. Rauch, and H. Wölwitsch,Physica B156–157, 588 (1989).

    Google Scholar 

  63. A. Messiah,Quantum Mechanics (North-Holland, Amsterdam, 1965).

    Google Scholar 

  64. M. Moshinsky,Phys. Rev. 88, 625 (1952).

    Google Scholar 

  65. R. Gähler and R. Golub,Z. Phys. B56, 5 (1984).

    Google Scholar 

  66. H. Rauch, H. Wölwitsch, R. Clothier, H. Kaiser, and S. A. Werner,Phys. Rev. A42, 49 (1992).

    Google Scholar 

  67. C. Dewdney,Phys. Lett. 109A, 377 (1985).

    Google Scholar 

  68. C. Dewdney, P. R. Holland, and A. Kyprianidis,Phys. Lett. A119, 259 (1986).

    Google Scholar 

  69. J. Bell, Plenary Lecture, 100th Birthday Schrödinger Symposium, Vienna, 1988.

  70. A. G. Klein and S. A. Werner,Rep. Prog. Phys. 46, 259 (1983).

    Google Scholar 

  71. D. Greenberger,Rev. Mod. Phys. 55, 875 (1983).

    Google Scholar 

  72. H. Rauch,Contemp. Phys. 27, 345 (1986).

    Google Scholar 

  73. S. A. Werner and A. G. Klein, inMethods of Experimental Physics, Vol. 23, Part A (Academic Press, New York, 1986), p. 259.

    Google Scholar 

  74. V. F. Sears,Neutron Optics (Oxford University Press, Oxford, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rauch, H. Reality in neutron interference experiments. Found Phys 23, 7–36 (1993). https://doi.org/10.1007/BF01883988

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01883988

Keywords

Navigation