Foundations of Physics

, Volume 23, Issue 5, pp 809–818 | Cite as

Casimir force between two Aharonov-Bohm solenoids

  • I. H. Duru
Part IV. Invited Papers Dedicated To Asim Orhan Barut


The vacuum structure for the massive charged scalar field in the region of two parallel, infinitely long and thin solenoids confining the fluxesn1 andn2 is studied. By using the Green function method, it is found that the vacuum expectation value of the system's energy has a finite mutual interaction term depending on the distance a between the solenoids, which implies an attractive force per unit length given by F n1n2 =−(ℏc/π2)(n1n2)2/a3.


Scalar Field Green Function Unit Length Function Method Attractive Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. B. G. Casimir,Proc. K. Ned. Akad. Wet. 51, 793 (1948);Physica 19, 846 (1956).Google Scholar
  2. 2.
    N. D. Birrell and P. C. W. Davies,Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982).Google Scholar
  3. 3.
    G. Plumien, B. Müller, and W. Greiner,Phys. Rep. C 134, 87 (1986).Google Scholar
  4. 4.
    Y. Aharonov and D. Bohm,Phys. Rev. 115, 485 (1959); W. Ehrenberg and R. E. Sidney,Proc. Phys. Soc. B 62, 8 (1949).Google Scholar
  5. 5.
    L. S. Schulman,J. Math. Phys. 12, 304 (1971).Google Scholar
  6. 6.
    See, for example, I. H. Duru and N. Ünal,Phys. Rev. D 34, 959 (1986).Google Scholar
  7. 7.
    R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).Google Scholar
  8. 8.
    I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series and Products, 4th edn. (Academic Press, New York, 1965).Google Scholar
  9. 9.
    W. Magnus, F. Oberhettinger, and R. P. Soni,Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd edn. (Springer, Berlin, 1966).Google Scholar
  10. 10.
    W. Gröbner and N. Hofreiter,Integral Tafel, Zweiter Teil (Springer, New York, 1966).Google Scholar
  11. 11.
    See, for example, V. M. Mostepanenko and N. N. Trunov,Sov. Phys. Usp. 31, 965 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • I. H. Duru
    • 1
    • 2
  1. 1.Mathematics DepartmentEdirneTurkey
  2. 2.Marmara Research Centre, TubitakGebzeTurkey

Personalised recommendations