Foundations of Physics

, Volume 23, Issue 5, pp 721–738 | Cite as

A global equilibrium as the foundation of quantum randomness

  • Detlef Dürr
  • Sheldon Goldstein
  • Nino Zanghí
Part IV. Invited Papers Dedicated To Asim Orhan Barut


We analyze the origin of quantum randomness within the framework of a completely deterministic theory of particle motion—Bohmian mechanics. We show that a universe governed by this mechanics evolves in such a way as to give rise to the appearance of randomness, with empirical distributions in agreement with the predictions of the quantum formalism. Crucial ingredients in our analysis are the concept of the effective wave function of a subsystem and that of a random system. The latter is a notion of interest in its own right and is relevant to any discussion of the role of probability in a deterministic universe.


Wave Function Particle Motion Empirical Distribution Quantum Randomness Random System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. S. Bell, “Beables for quantum field theory,” CERN-TH 4035/84, reprinted in Ref. 2.Google Scholar
  2. 2.
    J. S. Bell,Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987).Google Scholar
  3. 3.
    J. S. Bell, “Against measurement,”Physics World 3, 33–40 (1990).Google Scholar
  4. 4.
    K. Berndl, Dotoral Thesis, Universität München, in preparation.Google Scholar
  5. 5.
    D. Bohm, “A suggested interpretation of the quantum theory in terms of ‘hidden variables’,”Phys. Rev. 85, 166–193 (1952).Google Scholar
  6. 6.
    D. Bohm, B. J. Hiley, and P. N. Kaloyerou, “An ontological basis for quantum theory. II A causal interpretation of quantum fields,”Phys. Rep. 144, 349–375 (1987).Google Scholar
  7. 7.
    D. Dürr, S. Goldstein, and N. Zanghí, “Quantum equilibrium and the origin of absolute uncertainty,”J. Stat. Phys. 67, 843–907 (1992).Google Scholar
  8. 8.
    D. Dürr, S. Goldstein, and N. Zanghí, “On a realistic theory for quantum physics,” inStochastic Processes, Geometry and Physics, S. Albeverio, G. Casati, U. Cattaneo, D. Merlini, and R. Mortesi, eds. (World Scientific, Singapore, 1990), pp. 374–391.Google Scholar
  9. 9.
    M. Daumer, D. Dürr, S. Goldstein, and N. Zanghí, “On the role of operators in quantum theory,” in preparation.Google Scholar
  10. 10.
    H. Everett, “‘Relative state’ formulation of quantum mechanics,”Rev. Mod. Phys. 29, 454–462 (1957).Google Scholar
  11. 11.
    M. Gell-Mann and J. B. Hartle, “Quantum mechanics in the light of quantum cosmology,” inComplexity, Entropy, and the Physics of Information, W. Zurek, ed. (Adison-Wesley, Reading, Massachusetts, 1990), pp. 425–458.Google Scholar
  12. 12.
    G. C. Ghirardi, A. Rimini, and T. Weber, Unified dynamics for microscopic and macroscopic systems,”Phys. Rev. D 34, 470–491 (1986).Google Scholar
  13. 13.
    W. Heisenberg,Physics and Beyond (Harper & Row, New York, 1971), p. 63.Google Scholar
  14. 14.
    N. S. Krylov,Works on the Foundations of Statistical Mechanics (Princeton University Press, Princeton, 1979).Google Scholar
  15. 15.
    R. Penrose,The Emperor's New Mind (Oxford University Press, New York, 1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Detlef Dürr
    • 1
    • 2
  • Sheldon Goldstein
    • 1
  • Nino Zanghí
    • 1
    • 3
  1. 1.Department of MathematicsRutgers UniversityNew Brunswick
  2. 2.Fakultät für MathematikUniversität MünchenMünchen 2Germany
  3. 3.Istituto di FisicaUniversità di Genova, INFNGenovaItaly

Personalised recommendations