Skip to main content
Log in

Distance geometry and geometric algebra

  • Part II. Invited Papers Dedicated To David Hestenes
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Möbius invention of homogeneous coordinates was one of the most far-reaching ideas in the history of mathematics: comparable to Leibnitz's invention of differentials.

H.S.M. Coxeter, Introduction to Geometry, p. 221

... the inhabitants of a hyperbolic world would also study horospherical geometry, which is the same as Euclidean geometry!

H.S.M. Coxeter, Introduction to Geometry, p. 304

Abstract

As part of his program to unify linear algebra and geometry using the language of Clifford algebra, David Hestenes has constructed a (well-known) isomorphism between the conformal group and the orthogonal group of a space two dimensions higher, thus obtaining homogeneous coordinates for conformal geometry.(1) In this paper we show that this construction is the Clifford algebra analogue of a hyperbolic model of Euclidean geometry that has actually been known since Bolyai, Lobachevsky, and Gauss, and we explore its wider invariant theoretic implications. In particular, we show that the Euclidean distance function has a very simple representation in this model, as demonstrated by J. J. Seidel.(18)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Hestenes, “The design of linear algebra and geometry,”Acta Appl. Math. 23, 65–93 (1991).

    Google Scholar 

  2. H. A. Kastrup, “Zur physikalischen Deutung und darstellungstheoretischen Analyse der konformen Transformationen von Raum und Zeit,”Ann. Phys. (Leipzig) 9, 388–428 (1962).

    Google Scholar 

  3. A. Crumeyrolle,Orthogonal and Symplectic Clifford Algebras, Spinor Structures (Kluwer Academic, Dordrecht, 1990).

    Google Scholar 

  4. D. Hestenes, “Universal geometric algebra,”Simon Stevin 62, 253–274 (1988).

    Google Scholar 

  5. L. V. Ahlfors, “Möbius transformations and Clifford numbers,” in I. Chavel and H. M. Farkas, eds.,Differential Geometry and Complex Analysis (Springer, Berlin, 1985).

    Google Scholar 

  6. J. Maks, “Modulo (1, 1) Periodicity of Clifford Algebras and Generalized (anti-)Möbius Transformations,” PhD thesis, T.U. Delft, 1989.

  7. P. Lounesto and A. Springer, “Möbius transformations and Clifford algebras of Euclidean and anti-Euclidean spaces,” in J. Lawrynowicz, ed.,Deformations of Mathematical Structures (Kluwer Academic, Dordrecht, 1989), pp. 79–90.

    Google Scholar 

  8. J. P. Fillmore and A. Springer, “Möbius groups over general fields using Clifford algebras associated with spheres,”Int. J. Theor. Phys. 29, 225–246 (1990).

    Google Scholar 

  9. F. Klein,Elementary Mathematics from an Advanced Standpoint: Geometry (Dover, London, 1939; translated from the original in German).

    Google Scholar 

  10. M. J. Crowe,A History of Vector Analysis (University of Notre Dame Press, Notre Dame, 1967).

    Google Scholar 

  11. D. Hestenes,New Foundations for Classical Mechanics (Reidel, Dordrecht, 1986).

    Google Scholar 

  12. J. A. Thorpe,Elementary Topics in Differential Geometry (Springer, New York, 1979).

    Google Scholar 

  13. K. Menger, “Untersuchungen über allgemeine Metrik,”Math. Ann. 100, 75–163 (1928).

    Google Scholar 

  14. K. Menger, “New foundation of Euclidean geometry,”Am. J. Math. 53, 721–745 (1931).

    Google Scholar 

  15. J. J. Seidel, “Distance-geometric development of two-dimensional Euclidean, hyperbolic and spherical geometry,”Simon Stevin 29, 32–50, 65–76 (1952).

    Google Scholar 

  16. L. M. Blumenthal,Theory and Applications of Distance Geometry (Cambridge University Press, Cambridge, 1953; reprinted by Chelsea, London, 1970).

    Google Scholar 

  17. L. M. Blumenthal,A Modern View of Geometry (Dover, New York, 1961).

    Google Scholar 

  18. J. J. Seidel, “Angles and distances inn-dimensional Euclidean and non-Euclidean geometry,” I–III.Indag. Math. 17, 329–340, 535–541 (1955); reprinted byProc. Ned. Akad. Wetensch.

    Google Scholar 

  19. J. Dieudonné and J. B. Carrell, “Invariant theory, old and new,”Adv. Math. 4, 1–80 (1970); reprinted by Academic Press, 1971.

    Google Scholar 

  20. H. Kraft,Geometrische Methoden in der Invariantentheorie (Vieweg, Braunschweig, Germany, 1985).

    Google Scholar 

  21. D. R. Richman, “The fundamental theorems of vector invariants,”Adv. Math. 73, 43–78 (1989).

    Google Scholar 

  22. D. Hilbert, “Über die vollen invariantensysteme,”Math. Ann. 42, 313–373 (1893).

    Google Scholar 

  23. Ch. S. Fisher, “The death of a mathematical theory: A study in the sociology of knowledge,”Arch. History Exact Sci. 3, 137–159 (1966).

    Google Scholar 

  24. D. Hestenes and R. Ziegler, “Projective geometry with Clifford algebra,”Acta Appl. Math. 23, 25–63 (1991).

    Google Scholar 

  25. N. L. White, “Invariant-theoretic computation in projective geometry,” inDIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 6 (American Mathematical Society, 1991), pp. 363–377.

  26. N. L. White, “Multilinear Cayley factorization,”J. Symb. Comput. 11, 421–438 (1991).

    Google Scholar 

  27. T. McMillan and N. L. White, “The dotted straightening algorithm,”J. Symb. Comput. 11, 471–482 (1991).

    Google Scholar 

  28. B. Buchberger, “History and basic features of the critical-pair/completion procedure,”J. Symb. Comput. 3, 3–38 (1987).

    Google Scholar 

  29. B. Sturmfels and N. White, “Gröbner bases and invariant theory,”Adv. Math. 76, 245–259 (1989).

    Google Scholar 

  30. T. F. Havel, “Some examples of the use of distances as coordinates for Euclidean geometry,”J. Symb. Comput. 11, 579–593 (1991).

    Google Scholar 

  31. J. Dalbec and B. Sturmfels, personal communication.

  32. A. W. M. Dress and T. F. Havel, “Fundamentals of the distance geometry approach to the problems of molecular conformation,” inProc. INRIA Workshop on Computer-Aided Geometric Reasoning, 1987.

  33. G. M. Crippen and T. F. Havel,Distance Geometry and Molecular Conformation (Research Studies Press, Letchworth, U.K., 1988; U.S. distributer: Wiley, New York).

    Google Scholar 

  34. T. E. Cecil,Lie Sphere Geometry (Springer, New York, 1992).

    Google Scholar 

  35. D. Pedoe,A Course of Geometry for Colleges and Universities (Cambridge University Press, Cambridge, 1970).

    Google Scholar 

  36. E. Snapper and R. J. Troyer,Metric Affine Geometry (Academic, New York, 1971; reprinted by Dover, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dress, A.W.M., Havel, T.F. Distance geometry and geometric algebra. Found Phys 23, 1357–1374 (1993). https://doi.org/10.1007/BF01883783

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01883783

Keywords

Navigation