Skip to main content
Log in

Algebraic methods for the Natanzon potentials

  • Part III. Invited Papers Dedicated To Asim Orhan Barut
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

It is shown that the Schrödinger equation can be solved by means of spectrum-generating algebra techniques for the most general class of Natanzon potentials based on the SO(2, 1) algebra. This paper describes in detail thelinear spectrum generating algebra method which is then applied to solve the Natanzon confluent potentials, and it is extended to one example with spin-orbit coupling. Further, the method is used to explain in detail how to find the energy spectrum for the Dirac equation with a Coulomb potential. Afterwards thequadratic spectrum generation algebra method is presented, and it is used to solve the most general hypergeometric Natanzon potential: The bound state problem and the corresponding wave functions are given. A simple example further illustrates the use of the quadratic method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Natanzon,Teor. Mat. Fiz. 38, 146 (1979).

    Google Scholar 

  2. A. O. Barut, inHigh-Energy Physics and Elementary Particles (IAEE, Vienna, 1965).

    Google Scholar 

  3. A. O. Barut,Dynamical Groups and Generalized Symmetries in Quantum Theory (University of Canterbury, New Zealand, 1972).

    Google Scholar 

  4. A. O. Barut and R. Raczka,Theory of Group Representations and Applications (PWN, Warsaw, 1977).

    Google Scholar 

  5. A. O. Barut, P. Cordero, and G. C. Ghirardi,Phys. Rev. D 1, 356 (1970).

    Google Scholar 

  6. A. O. Barut, A. Inomata, and R. Wilson,J. Phys. A: Math. Gen. 20, 4083 (1987).

    Google Scholar 

  7. P. Cordero and G. C. Ghirardi,Nuovo Cimento A 2, 217 (1971); P. Cordero and G. C. Ghirardi,Fortsch. Phys. 20, 105 (1972).

    Google Scholar 

  8. P. Cordero, S. Hojman, P. Furlan, and G. C. Ghirardi,Nuovo Cimento A 3, 807 (1971).

    Google Scholar 

  9. P. Cordero and S. Hojman,Lett. Nuovo Cimento 4, 1123 (1970).

    Google Scholar 

  10. P. Cordero and S. Salamó,J. Phys. A: Math. Gen. 24, 5299 (1991).

    Google Scholar 

  11. G. C. Ghirardi,Nuovo Cimento A 10, 97 (1972); G. C. Ghirardi,Fortsch. Phys. 21, 653 (1973).

    Google Scholar 

  12. M. Villasante, M.Sc. thesis, Universidad de Chile, 1980, unpublished.

  13. F. Cooper, J. Ginocchio, and A. Kahare,Phys. Rev. D 36, 2458 (1987).

    Google Scholar 

  14. E. Witten,Nucl. Phys. B 185, 513 (1981); P. Salomonson and J. W. van Holten,Nucl. Phys. B 196, 509 (1982); R. Adhikari, R. Dutt, and Y. P. Varshni,Phys. Lett. A 141, 1 (1989).

    Google Scholar 

  15. J. W. Dabrowska, A. Khare, and U. P. Sukhatme,J. Phys. A: Math. Gen. 21, L125 (1988).

    Google Scholar 

  16. F. Cooper, J. N. Ginocchio, and A. Wipf,J. Phys. A: Math. Gen. 22, 3707 (1989).

    Google Scholar 

  17. F. Cooper, J. N. Ginocchio, and A. Wipf,Phys. Rev. Lett. A 129, 145 (1988).

    Google Scholar 

  18. L. Gendeshtein,JEPT Lett. 38, 356 (1983).

    Google Scholar 

  19. R. Dutt, A. Khare, and U. P. Sukhatme,Phys. Rev. Lett. B 181, 295 (1986).

    Google Scholar 

  20. G. Lévai,J. Phys. A: Math. Gen. 22, 689 (1989).

    Google Scholar 

  21. Y. Alhassid, F. Gursey, and F. Iachello,Phys. Rev. Lett. 50, 873 (1983);Ann. Phys. (New York) 148, 346 (1983); Y. Alhassid, F. Iachello, and J. Wu,Phys. Rev. Lett. 56, 271 (1986); J. Wu and Y. Alhassid,J. Math. Phys. 31, 557 (1990).

    Google Scholar 

  22. P. Cordero and S. Salamó, inCondensed Matter Theories, Vol. 7, A. N. Proto and J. Aliaga, eds. (Plenum, New York, 1992).

    Google Scholar 

  23. P. Cordero and S. Salamó,Int. J. Theor. Phys. 13, 265 (1975).

    Google Scholar 

  24. A. O. Barut and C. Fronsdal,Proc. R. Soc. (London) A 287, 532 (1965).

    Google Scholar 

  25. B. G. Wybourne,Classical Groups for Physicists (Wiley, New York, 1974).

    Google Scholar 

  26. G. Feinberg,Phys. Rev. 112, 1637 (1958); E. E. Salpeter,Phys. Rev. 112, 1642 (1958).

    Google Scholar 

  27. R. P. Feynman and M. Gell-Mann,Phys. Rev. 109, 193 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by grant FONDECYT 90-1240.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordero, P., Salamó, S. Algebraic methods for the Natanzon potentials. Found Phys 23, 675–690 (1993). https://doi.org/10.1007/BF01883772

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01883772

Keywords

Navigation