Advertisement

Foundations of Physics

, Volume 22, Issue 6, pp 755–806 | Cite as

Foundational problems in quantum gravity and quantum cosmology

  • Eduard Prugovečki
Part II. Invited Papers Dedicated To Henry Margenau

Abstract

The conventionalistically based instrumentalist epistemology and methodology underlying the various approaches to the quantization of gravity is contrasted with the operationally based logical analysis practiced by the founders of relativity theory and quantum mechanics in developing their respective disciplines. The foundational problems to which they give rise are described. Their origins are traced to instrumentalist practices which have been in the past the objects of criticisms by Dirac, Heisenberg, Born, and others, but which have nevertheless prevailed in relativistic quantum physics after the emergence of the conventional renormalization program. The operationally based premises of a recently developed geometro-stochastic approach to the quantization of gravity are analyzed. It is shown that their roots lie in the epistemology adopted by the founders of relativity theory and quantum mechanics, and that they reflect a conceptualization of quantum reality which offers the possibility of a resolution of the main foundational problems encountered by the other approaches to quantum gravity.

Keywords

Quantum Mechanic Quantum Gravity Relativistic Quantum Logical Analysis Quantum Cosmology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Prugovečki,Quantum Geometry (Kluwer, Dordrecht, 1992), referred to as I.Google Scholar
  2. 2.
    A. Ashtekar and J. Stachel, eds.,Conceptual Problems in Quantum Gravity (Birkhäuser, Boston, 1991).Google Scholar
  3. 3.
    S. Coleman, J. Hartle, T. Piran, and S. Weinberg, eds.,Quantum Cosmology and Baby Universes (World Scientific, Singapore, 1991).Google Scholar
  4. 4.
    A. Einstein,Ann. Phys. 49, 769 (1916); translated in English by W. Perrett and G. B. Jeffery as “The Foundation of the General Theory of Relativity,” pp. 109–164 inThe Principle of Relativity (Methuen, London, 1923; reprinted by Dover, New York, 1952).Google Scholar
  5. 5.
    E. Prugovečki, “Realism, Positivism, Instrumentalism, and Quantum Geometry,”Found. Phys. 22, 143 (1992).Google Scholar
  6. 6.
    A. Einstein, inReadings on the Philosophy of Science, H. Feigl and M. Brodbeck, eds. (Appleton-Century-Crofts, New York, 1953).Google Scholar
  7. 7.
    R. F. Marzke and J. A. Wheeler, inGravitation and Relativity, H. Y. Chiu and W. F. Hoffmann, eds. (Benjamin, New York, 1964).Google Scholar
  8. 8.
    E. H. Kronheimer and R. Penrose,Proc. Cambridge Philos. Soc. 63, 481 (1967).Google Scholar
  9. 9.
    J. Ehlers, F. A. E. Pirani, and A. Schild, inGeneral Relativity, L. O'Raifeartaigh, ed. (Clarendon Press, Oxford, 1972).Google Scholar
  10. 10.
    J. Ehlers, inRelativity, Astrophysics and Cosmology, W. Israel, ed. (Reidel, Dordrecht, 1973).Google Scholar
  11. 11.
    N. M. J. Woodhouse,J. Math. Phys. 14, 495 (1973).Google Scholar
  12. 12.
    J. Stachel, inGeneral Relativity and Gravitation, Vol. 1, A. Held, ed. (Plenum, New York, 1980).Google Scholar
  13. 13.
    A. Schilpp, ed.,Albert Einstein: Philosopher-Scientist (The Library of Living Philosophers, Evanston, Illinois, 1949).Google Scholar
  14. 14.
    M. Born,Dan. Mat. Fys. Medd. 30, No. 2 (1955).Google Scholar
  15. 15.
    M. Born,Physics in My Generation (Pergamon, London, 1956).Google Scholar
  16. 16.
    W. James,The Meaning of Truth (University of Michigan Press, Ann Arbor, Michigan, 1970).Google Scholar
  17. 17.
    J. Dewey,Problems of Men (Philosophical Library Inc., New York, 1946).Google Scholar
  18. 18.
    H. P. Stapp,Am. J. Phys. 40, 1098 (1972).Google Scholar
  19. 19.
    W. Heisenberg,Physics and Beyond (Harper and Row, New York, 1971).Google Scholar
  20. 20.
    W. Heisenberg,Phys. Today 29(3), 32 (1976).Google Scholar
  21. 21.
    P. A. M. Dirac,Proc. R. Soc. London A 209, 291 (1951).Google Scholar
  22. 22.
    H. S. Kragh,Dirac: A Scientific Biography (Cambridge University Press, Cambridge, 1990).Google Scholar
  23. 23.
    P. A. M. Dirac, inDirections in Physics, H. Hora and J. R. Shepanski, eds. (Wiley, New York, 1978).Google Scholar
  24. 24.
    P. A. M. Dirac, inReminiscences about a Great Physicist: Paul Adrien Maurice Dirac, B. N. Kursunoglu and E. P. Wigner, eds. (Cambridge University Press, Cambridge, 1987).Google Scholar
  25. 25.
    M. H. Goroff and A. Sagnotti,Nucl. Phys. B 266, 709 (1986).Google Scholar
  26. 26.
    S. Weinberg,Rev. Mod. Phys. 61, 1 (1989).Google Scholar
  27. 27.
    C. J. Isham, inQuantum Gravity: An Oxford Symposium, C. J. Isham, R. Penrose, and D. W. Sciama, eds. (Clarendon Press, Oxford, 1975).Google Scholar
  28. 28.
    C. J. Isham, inGeneral Relativity and Gravitation, M. A. H. MacCallum, ed. (Cambridge University Press, Cambridge, 1987).Google Scholar
  29. 29.
    B. S. DeWitt,Phys. Rev. 160, 1113 (1967);162, 1195, 1239 (1967).Google Scholar
  30. 30.
    S. Deser, inQuantum Gravity: An Oxford Symposium, C. J. Isham, R. Penrose, and D. W. Sciama, eds. (Clarendon Press, Oxford, 1975).Google Scholar
  31. 31.
    P. van Nieuwenhuizen, inProceedings of the First Marcel Grossmann Meeting on General Relativity, R. Ruffini, ed. (North-Holland, Amsterdam, 1977).Google Scholar
  32. 32.
    P. C. West,Introduction to Supersymmetry and Supergravity (World Scientific, Singapore, 1986).Google Scholar
  33. 33.
    P. A. M. Dirac,Can. J. Math. 2, 129 (1950).Google Scholar
  34. 34.
    P. A. M. Dirac,Proc. R. Soc. London A 246, 326, 333 (1958).Google Scholar
  35. 35.
    P. A. M. Dirac,Phys. Rev. 114, 924 (1959).Google Scholar
  36. 36.
    R. Arnowitt, S. Deser, and C. W. Misner, inGravitation: An Introduction to Current Research, L. Witten, ed. (Wiley, New York, 1962).Google Scholar
  37. 37.
    P. A. M. Dirac, inContemporary Physics, Vol. 1, Trieste Symposium (Vienna: IAEA, 1968).Google Scholar
  38. 38.
    P. A. M. Dirac,Sci. Am. 208(5), 45 (1963).Google Scholar
  39. 39.
    G. T. Horwitz, inGeneral Relativity and Gravitation, N. Ashby, D. F. Bartlett, and W. Wyss, eds. (Cambridge University Press, Cambridge, 1990).Google Scholar
  40. 40.
    K. S. Narain,Phys. Lett. B 169, 41 (1986).Google Scholar
  41. 41.
    D. J. Gross and V. Perival,Phys. Rev. Lett. 60, 2105 (1988);61, 1517 (1988).Google Scholar
  42. 42.
    E. Alvarez,Rev. Mod. Phys. 61, 561 (1989).Google Scholar
  43. 43.
    M. Kaku,Introduction to Superstrings (Springer, New York, 1988).Google Scholar
  44. 44.
    K. C. Wali,Prog. Theor. Phys. Suppl. 86, 387 (1986).Google Scholar
  45. 45.
    L. Gårding and A. S. Wightman,Proc. Nat. Acad. Sci. USA 49, 617, 622 (1954).Google Scholar
  46. 46.
    J. von Neumann,Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932); translated in English by R. T. Beyer asMathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955).Google Scholar
  47. 47.
    P. G. Bergmann and A. Komar, inGeneral Relativity and Gravitation, Vol. 1, A. Held, ed. (Plenum, New York, 1980).Google Scholar
  48. 48.
    K. KuchaŚ,Phys. Rev. D 4, 4 (1971).Google Scholar
  49. 49.
    S. W. Hawking, inGeneral Relativity: An Einstein Centernary Survey, S. W. Hawking and W. Israel, eds. (Cambridge University Press, Cambridge, 1979).Google Scholar
  50. 50.
    J. B. Hartle and S. W. Hawking,Phys. Rev. D 28, 2960 (1983).Google Scholar
  51. 51.
    S. W. Hawking,Nucl. Phys. B 239, 257 (1984).Google Scholar
  52. 52.
    B. S. DeWitt and N. Graham, eds.,The Many-Worlds Interpretation of Quantum Mechanics (Princeton University Press, Princeton, 1973).Google Scholar
  53. 53.
    J. D. Barrow and F. J. Tipler,The Anthropic Cosmological Principle (Clarendon Press, Oxford, 1986).Google Scholar
  54. 54.
    J. A. Wheeler, inProblems in the Foundations of Physics, G. Toraldo de Francia, ed. (North-Holland, Amsterdam, 1979).Google Scholar
  55. 55.
    A. Vilenkin,Phys. Rev. D 39, 1116 (1989).Google Scholar
  56. 56.
    W. G. Unruh and R. M. Wald,Phys. Rev. D 40, 2598 (1989).Google Scholar
  57. 57.
    A. Anderson and B. DeWitt,Found. Phys. 16, 91 (1986).Google Scholar
  58. 58.
    J. A. Wheeler,Ann. Phys. (N. Y.) 2, 604 (1957).Google Scholar
  59. 59.
    J. J. Halliwell and S. W. Hawking,Phys. Rev. D 31, 1777 (1985).Google Scholar
  60. 60.
    T. Banks,Nucl. Phys. B 249, 332 (1985).Google Scholar
  61. 61.
    J. B. Hartle, inGeneral Relativity and Gravitation, N. Ashby, D. F. Barlett, and W. Wyss, eds. (Cambridge University Press, Cambridge, 1990).Google Scholar
  62. 62.
    A. Pickering,Constructing Quarks—A Sociological History of Particle Physics (University of Chicago Press, Chicago, 1984).Google Scholar
  63. 63.
    B. S. DeWitt, inGeneral Relativity and Gravitation, B. Bertotti, F. de Felice, and A. Pascolini, eds. (Reidel, Dordrecht, 1984).Google Scholar
  64. 64.
    S. Coleman,Nucl. Phys. B 310, 643 (1988).Google Scholar
  65. 65.
    H. Harary,Sci. Am. 248(4), 56 (1983).Google Scholar
  66. 66.
    M. J. G. Veltman,Sci. Am. 255(5), 76 (1986).Google Scholar
  67. 67.
    S. Weinberg,Phys. Today 40(1), 7 (1987).Google Scholar
  68. 68.
    S. W. Hawking,Phys. Lett. B 195, 337 (1987).Google Scholar
  69. 69.
    S. W. Hawking,Phys. Rev. D 37, 904 (1988).Google Scholar
  70. 70.
    R. L. Oldershaw,Am. J. Phys. 56, 1075 (1988).Google Scholar
  71. 71.
    P. J. E. Peebles,Science 235, 372 (1987).Google Scholar
  72. 72.
    W. Fischler, I. Klebanov, J. Polchinski, and L. Susskind,Nucl. Phys. B 327, 157 (1989).Google Scholar
  73. 73.
    T. Banks,Nucl. Phys. B 309, 493 (1988).Google Scholar
  74. 74.
    H. P. Stapp,Found. Phys. 21, 1 (1911).Google Scholar
  75. 75.
    E. P. Tryon,Nature (London) 246, 396 (1973).Google Scholar
  76. 76.
    A. Vilenkin,Phys. Lett. B 117, 26 (1982).Google Scholar
  77. 77.
    S. S. Schweber,Osiris 2, 265 (1986).Google Scholar
  78. 78.
    S. S. Schweber, inPions to Quarks: Particle Physics in the 1950's, L. M. Brown, M. Dresden, and L. Hoddeson, eds. (Cambridge University Press, Cambridge, 1989).Google Scholar
  79. 79.
    P. A. M. Dirac, inMathematical Foundations of Quantum Mechanics, A. R. Marlow, ed. (Academic Press, New York, 1978).Google Scholar
  80. 80.
    E. Prugovečki,J. Math. Phys. 7, 1054, 1070, 1680 (1966).Google Scholar
  81. 81.
    E. Prugovečki,Can. J. Phys. 45, 2173 (1967).Google Scholar
  82. 82.
    H. Margenau,The Nature of Physical Reality (McGraw-Hill, New York, 1950).Google Scholar
  83. 83.
    H. Margenau,Philos. Sci. 25, 23 (1958).Google Scholar
  84. 84.
    J. L. Park and H. Margenau,Int. J. Theor. Phys. 1, 211 (1968).Google Scholar
  85. 85.
    L. de Broglie,Comp. Rend. 177, 506, 548, 630 (1923).Google Scholar
  86. 86.
    L. de Broglie, inPerspectives in Quantum Theory, W. Yougrau and A. van der Merwe, eds. (Dover, New York, 1979).Google Scholar
  87. 87.
    E. Prugovečki,Found. Phys. Lett. 4, 129 (1991).Google Scholar
  88. 88.
    N. Bohr,Atomic Physics and Human Knowledge (Science Editions, New York, 1961).Google Scholar
  89. 89.
    H. Arzeliés,Relativistic Kinematics (Pergamon Press, Oxford, 1966).Google Scholar
  90. 90.
    J. Anandan, inQuantum Concepts in Space and Time, R. Penrose and C. J. Isham, eds. (Clarendon Pres, Oxford, 1986).Google Scholar
  91. 91.
    J. Anandan and L. Stodolski,Phys. Rev. Lett. 50, 1730 (1983).Google Scholar
  92. 92.
    J. Anandan, inProc. Int. Symp. on Foundations of Quantum Mechanics in the Light of New Technology, Tokyo, 1983, S. Kamefuchi, H. Ezawa, Y. Murayama, M. Namiki, and T. Yajima, eds. (Physical Society of Japan, Tokyo, 1984).Google Scholar
  93. 93.
    E. Prugovečki,Found. Phys. Lett. 3, 37 (1990).Google Scholar
  94. 94.
    A. Einstein,Relativity: the Special and the General Theory, 15th edition (Crown Publishers, New York, 1961).Google Scholar
  95. 95.
    A. Einstein and M. Grossmann,Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation (Teubner, Leipzig, 1913). Reprinted inZ. Math. Phys. 62, 225 (1914).Google Scholar
  96. 96.
    D. Howard and J. Stachel, eds.,Einstein and the History of General Relativity and Gravitation (Birkhäuser, Boston, 1989).Google Scholar
  97. 97.
    C. Rovelli,Class. Quantum Gravit. 8, 297, 317 (1991).Google Scholar
  98. 98.
    W. Drechsler,J. Math. Phys. 18, 1358 (1977).Google Scholar
  99. 99.
    M. Atiyah, N. J. Hitchin, and I. M. Singer,Proc. R. Soc. London A 362, 425 (1978).Google Scholar
  100. 100.
    A. Trautman, inGeneral Relativity and Gravitation, Vol. 1, A. Held, ed. (Plenum, New York, 1980).Google Scholar
  101. 101.
    M. Göckeler and T. Schücker,Differential Geometry, Gauge Theories, and Gravity (Cambridge University Press, Cambridge, 1987).Google Scholar
  102. 102.
    J. Stachel, inGeneral Relativity and Gravitation, M. A. H. MacCallum, ed. (Cambridge University Press, Cambridge, 1987).Google Scholar
  103. 103.
    I. Prigogine,From Being to Becoming (Freeman, San Francisco, 1980).Google Scholar
  104. 104.
    M. Friedman,Foundations of Space-Time Theories (Princeton University Press, Princeton, 1983).Google Scholar
  105. 105.
    P. A. M. Dirac,Lectures on Quantum Mechanics (Belfer Graduate School of Science, New York, 1964).Google Scholar
  106. 106.
    P. A. M. Dirac,The Principles of Quantum Mechanics, 3rd edition (Clarendon Press, London, 1947).Google Scholar
  107. 107.
    N. Bohr and L. Rosenfeld,Mat.-fys. Medd. Dan. Vid. Selsk. 12, No. 8 (1933); English translation reprinted in Ref. 110.Google Scholar
  108. 108.
    N. Bohr and L. Rosenfeld,Phys. Rev. 78, 794 (1950); reprinted in Ref. 110.Google Scholar
  109. 109.
    S. S. Horuzhy,Introduction to Algebraic Quantum Field Theory (Kluwer, Dordrecht, 1990).Google Scholar
  110. 110.
    J. A. Wheeler and W. H. Zurek, eds.,Quantum Theory and Measurement (Princeton University Press, Princeton, 1983).Google Scholar
  111. 111.
    P. Busch,Int. J. Theor. Phys. 24, 63 (1985).Google Scholar
  112. 112.
    Y. Yamamoto and H. A. Haus,Rev. Mod. Phys. 58, 1001 (1986).Google Scholar
  113. 113.
    P. Busch, P. J. Lahti, and P. Mittelstaedt,Quantum Theory of Measurement (Springer, Berlin, 1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Eduard Prugovečki
    • 1
  1. 1.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations