Skip to main content
Log in

Review of invariant time formulations of relativistic quantum theories

  • Part II. Invited Papers Dedicated To Asim Orhan Barut
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to review relativistic quantum theories with an invariant evolution parameter. Parametrized relativistic quantum theories (PRQT) have appeared under such names as constraint Hamiltonian dynamics, four-space formalism, indefinite mass, micrononcausal quantum theory, parametrized path integral formalism, relativistic dynamics, Schwinger proper time method, stochastic interpretation of quantum mechanics and stochastic quantization. The review focuses on the fundamental concepts underlying the theories. Similarities as well as differences are highlighted, and an extensive bibliography is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

  • Aghassi, J. J., Roman, P., and Santilli, R. M. (1970a). “New dynamical group for the relativistic quantum mechanics of elementary particles,”Phys. Rev. D 1, 2753.

    Google Scholar 

  • Aghassi, J. J., Roman, P., and Santilli, R. M. (1970b). “Relation of the inhomogeneous dynamical de Sitter group to the quantum mechanics of elementary particles,”J. Math. Phys. 11, 2297.

    Google Scholar 

  • Aghassi, J. J., Roman, P., and Santilli, R. M. (1971). “Representation theory of a new relativistic dynamical group,”Nuovo Cimento 5A, 551.

    Google Scholar 

  • Alt, E. O., and Hannemann, M. (1986). “Relativistic scattering theory of charged spinless particles,”Czech. J. Phys. B 36, 922.

    Google Scholar 

  • Arensburg, A., and Horwitz, L. P. (1991). “Landau levels as mass excitations in relativistic quantum theory,”Found. Phys. Lett. 4, 247.

    Google Scholar 

  • Arshansky, R. I., and Horwitz, L. P. (1985). “The Landau-Peierls relation and a causal bound in covariant relativistic quantum theory,”Found. Phys. 15, 701.

    Google Scholar 

  • Arshansky, R. I., and Horwitz, L. P. (1988). “Covariant phase shift analysis for relativistic potential scattering,”Phys. Lett. A 131, 222.

    Google Scholar 

  • Arshansky, R. I., and Horwitz, L. P. (1989a). “The quantum relativistic two-body bound state. I. The spectrum,”J. Math. Phys. 30, 66.

    Google Scholar 

  • Arshansky, R. I., and Horwitz, L. P. (1989b). “The quantum relativistic two-body bound state. II. The induced representation of SL (2, C),”J. Math. Phys. 30, 380.

    Google Scholar 

  • Arshansky, R. I., and Horwitz, L. P. (1989c). “Relativistic potential scattering and phase shift analysis,”J. Math. Phys. 30, 213.

    Google Scholar 

  • Arshansky, R. I., Horwitz, L. P., and Lavie, Y. (1983). “Particles vs. events: the concatenated structure of world lines in relativistic quantum mechanics,”Found. Phys. 13, 1167.

    Google Scholar 

  • Arunasalam, V. (1970). “Hamiltonian and wave equations for particles of spin 0 and spin 1/2 with nonzero mass,”Am. J. Phys. 38, 1010.

    Google Scholar 

  • Bakri, M. M. (1971). “The canonical proper-time formalism,”Lett. Nuovo Cimento 2, 603.

    Google Scholar 

  • Barut, A. O. (1990). “Excited states ofZitterbewegung,”Phys. Lett. B 237, 436.

    Google Scholar 

  • Barut, A. O. (1991). “The covariant many-body problem in quantum electrodynamics,”J. Math. Phys. 32, 1091.

    Google Scholar 

  • Barut, A. O., and Duru, I. H. (1989). “Path integral formulation of quantum electrodynamics from classical particle trajectories,”Phys. Rep. 172, 1.

    Google Scholar 

  • Barut, A. O., and Pavsic, M. (1987). “Classical model of the Dirac electron in curved space,”Class. Quantum Gravit. 4, L41.

    Google Scholar 

  • Barut, A. O., and Pavsic, M. (1988). “Kaluza-Klein approach to the classical model of the Dirac electron,”Class. Quantum Gravit. 5, 707.

    Google Scholar 

  • Barut, A. O., and Thacker, W. (1985a). “Covariant generalization of theZitterbewegung of the electron and itsSO(4, 2) andSO(3, 2) internal algebras,”Phys. Rev. D 31, 1386.

    Google Scholar 

  • Barut, A. O., and Thacker, W. (1985b). “Zitterbewegung of the electron in external fields,”Phys. Rev. D 31, 2076.

    Google Scholar 

  • Barut, A. O., and Unal, N. (1989). “Generalization of the Lorentz-Dirac equation to include spin,”Phys. Rev. A 40, 5404.

    Google Scholar 

  • Barut, A. O., and Zanghi, N. (1984). “Classical model of the Dirac electron,”Phys. Rev. Lett. 52, 2009.

    Google Scholar 

  • Barut, A. O., Onem, C., and Unal, N. (1990). “The classical relativistic two-body problem with spin and self-interactions,”J. Phys. A 23, 1113.

    Google Scholar 

  • Bjorken, J. D., and Drell, S. D. (1964).Relativistic Quantum Mechanics (McGraw-Hill, New York).

    Google Scholar 

  • Blaha, S. (1975). “Relativistic bound-state models with quasifree constituent motion,”Phys. Rev. D 12, 3921.

    Google Scholar 

  • Breit, J. D., Gupta, S., and Zaks, A. (1984). “Stochastic quantization and regularization,”Nucl. Phys. B 233, 61.

    Google Scholar 

  • Broyles, A. A. (1970). “Space-time position operators,”Phys. Rev. D 1, 979.

    Google Scholar 

  • Brown, L. S. (1977). “Stress-tensor trace anomaly in a gravitational metric: scalar fields,”Phys. Rev. D 15, 1469.

    Google Scholar 

  • Burdet, G., and Pertin, M. (1990). “Global formulation of the Fokker-Planck equation over Newton-Cartan and Einstein space-times,”Europhys. Lett. 12, 199.

    Google Scholar 

  • Cai, Y. Q., and Papini, G. (1990). “Applying Berry's phase to problems involving weak gravitational and inertial fields,”Class. Quantum Gravit. 7, 269.

    Google Scholar 

  • Camporesi, R. (1990). “Harmonic analysis and propagators on homogeneous spaces,”Phys. Rep. 196, 1.

    Google Scholar 

  • Castell, L. (1967). “The relativistic position operator at subatomic level,”Nuovo Cimento 49, 285.

    Google Scholar 

  • Cawley, R. G. (1973). “Galilei-invariant single-particle action,”Nuovo Cimento B 16, 173.

    Google Scholar 

  • Chodos, A., Hauser, A. I., and Kostelecky, V. A. (1985). “The neutrino as a tachyon,”Phys. Lett. B 150, 431.

    Google Scholar 

  • Collins, R. E. (1977a). “Quantum theory: a Hilbert space formalism for probability theory,”Found. Phys. 7, 475.

    Google Scholar 

  • Collins, R. E. (1977b). “The mathematical basis of quantum mechanics,”Nuovo Cimento Lett. 18, 581.

    Google Scholar 

  • Collins, R. E. (1979). “The mathematical basis of quantum mechanics: II,”Nuovo Cimento Lett. 25, 473.

    Google Scholar 

  • Collins, R. E., and Fanchi, J. R. (1978). “Relativistic quantum mechanics: a space-time formalism for spin-zero particles,”Nuovo Cimento 48, 314.

    Google Scholar 

  • Cook, J. L. (1972a). “Solutions of the relativistic two-body problem. I. Classical mechanics,”Aust. J. Phys. 25, 117.

    Google Scholar 

  • Cook, J. L. (1972b). “Solutions of the relativistic two-body problem. II. Quantum mechanics,”Aust. J. Phys. 25, 141.

    Google Scholar 

  • Cooke, J. H. (1968). “Proper-time formulation of quantum mechanics,”Phys. Rev. 166, 1293.

    Google Scholar 

  • Corben, H. C. (1961). “Spin in classical and quantum theory,”Phys. Rev. 121, 1833.

    Google Scholar 

  • Corben, H. C. (1968).Classical and Quantum Theories of Spinning Particles (Holden-Day, San Francisco).

    Google Scholar 

  • Corns, R. A., and Osborn, T. A. (1990). “Propagators for relativistic systems with non-Abelian interactions,”J. Math. Phys. 31, 901.

    Google Scholar 

  • Crater, H. W., and van Alstine, P. (1987). “Two-body Dirac equations for particles interacting through world scalar and vector potentials,”Phys. Rev. D 36, 3007.

    Google Scholar 

  • Cronstrom, C. (1980). “A simple and complete Lorentz-covariant gauge condition,”Phys. Lett. B 90, 267.

    Google Scholar 

  • Cufaro-Petroni, N., and Vigier, J. P. (1979). “Causal superluminal interpretation of the Einstein-Podolsky-Rosen paradox,”Lett. Nuovo Cimento 26, 149.

    Google Scholar 

  • Cufaro-Petroni, N., Dewdney, C., Holland, P. R., and Kyprianidis, A., and Vigier, J. P. (1985). “Realistic physical origin of the equantum observable operator algebra in the frame of the causal stochastic interpretation of quantum mechanics: the relativistic spin-zero case,”Phys. Rev. D 32, 1375.

    Google Scholar 

  • Currie, D. G., Jordan, T. F., and Sudarshan, E. C. G. (1963). “Relativistic invariance and Hamiltonian theories of interacting particles,”Rev. Mod. Phys. 35, 350.

    Google Scholar 

  • Damgaard, P. H., and Huffel, H. (1987). “Stochastic Quantization,”Phys. Rep. 152, 227.

    Google Scholar 

  • Damour, T. (1986). “Strong field effects in general relativity,”Helv. Phys. Acta 59, 292.

    Google Scholar 

  • Davidon, W. C. (1955a). “Proper-time electron formalism,”Phys. Rev. 97, 1131.

    Google Scholar 

  • Davidon, W. C. (1955b). “Proper-time quantum electrodynamics,”Phys. Rev. 97, 1139.

    Google Scholar 

  • Davis, J., Unwin, S. C., and Muxlow, T. W. B. (1991). “Large-scale superluminal motion in the quasar 3C273,”Nature (London) 354, 374.

    Google Scholar 

  • Dewdney, C., Holland, P. R., Kyprianidis, A., and Vigier, J. P. (1985). “Causal action at a distance in a relativistic system of two bound charged spinless particles: hydrogenlike models,”Phys. Rev. D 31, 2533.

    Google Scholar 

  • Dewdney, C., Holland, P. R., Kyprianidis, A., Marie, Z., and Vigier, J. P. (1986a). “Stochastic physical origin of the quantum operator algebra and phase space interpretation of the Hilbert space formalism: the relativistic spin zero case,”Phys. Lett. A 113, 359.

    Google Scholar 

  • Dewdney, C., Holland, P. R., Kyprianidis, A., and Vigier, J. P. (1986b). “Relativistic Wigner function as the expectation value of the PT operator,”Phys. Lett. A 114, 440.

    Google Scholar 

  • DeWitt, B. S. (1975). “Quantum field theory in curved spacetime,”Phys. Rep. 19, 295.

    Google Scholar 

  • Dirac, P. A. M. (1949). “Forms of relativistic dynamics,”Rev. Mod. Phys. 21, 392.

    Google Scholar 

  • Dirac, P. A. M. (1951). “Is there an aether?”Nature (London)168, 906.

    Google Scholar 

  • Dirac, P. A. M. (1953). “The Lorentz transformation and absolute time,”Physica 19, 888.

    Google Scholar 

  • Di Vecchia, P., and Ravndal, F. (1979). “Supersymmetric Dirac particles,”Phys. Lett. A 73, 371.

    Google Scholar 

  • Droz-Vincent, Ph. (1979). “Action at a distance and relativistic wave equations for spinless quarks,”Phys. Rev. D 19, 702.

    Google Scholar 

  • Droz-Vincent, Ph. (1980). “Relativistic quantum theory of scattering,”Nuovo Cimento A 58, 355.

    Google Scholar 

  • Droz-Vincent, Ph. (1982a). “The multitime covariant formalism of relativistic dynamics,” inRelativistic Action at a Distance: Classical and Quantum Aspects (Lecture Notes in Physics162), J. Llosa, ed. (Springer, Berlin), p. 75.

    Google Scholar 

  • Droz-Vincent, Ph. (1982b). “Wave operators for relativistic two-body systems with central interaction,”Lett. Nuovo Cimento 33, 383.

    Google Scholar 

  • Droz-Vincent, Ph. (1984). “Two-body relativistic scattering of directly interacting particles,”Phys. Rev. D 29, 687.

    Google Scholar 

  • Droz-Vincent, Ph. (1987). “Relativistic mechanics with particle creation,” inConstraints Theory and Relativistic Dynamics, G. Longhi and L. Lusanna, eds. (World Scientific, Singapore).

    Google Scholar 

  • Droz-Vincent, Ph. (1988). “Proper time and evolution in quantum mechanics,”Phys. Lett. A 134, 147.

    Google Scholar 

  • Droz-Vincent, Ph. (1990). “Neutral relativistic two-body problem in constant magnetic field,”Phys. Lett. A 147, 406.

    Google Scholar 

  • Dubovikov, M. S., and Smilga, A. V. (1981). “Analytical properties of the quark polarization operator in an external self-dual field,”Nucl. Phys. B 185, 109.

    Google Scholar 

  • Ellis, J. R. (1981). “‘Proper time’ and the Dirac equation,”J. Phys. A 14, 2917.

    Google Scholar 

  • Enatsu, H. (1954a). “Mass spectrum of elementary particles I,”Prog. Theor. Phys. 11, 125.

    Google Scholar 

  • Enatsu, H. (1954b). “Mass spectrum of elementary particles II,”Prog. Theor. Phys. 12, 363.

    Google Scholar 

  • Enatsu, H. (1956). “Relativistic quantum mechanics and mass-quantization,”Suppl. Nuovo Cimento 3, 526.

    Google Scholar 

  • Enatsu, H. (1963). “Relativistic Hamiltonian formalism in quantum field theory and micrononcausality,”Prog. Theor. Phys. 30, 236.

    Google Scholar 

  • Enatsu, H. (1968). “Covariant Hamiltonian formalism for particles of any spin and nonzero mass,”Nuovo Cimento 58, 891.

    Google Scholar 

  • Enatsu, H. (1971). “Micro-noncausal theory of the hydrogen atom,” Memoirs of the Research Institute of Science and Engineering, Ritsumeikan University, Kyoto, Japan.

    Google Scholar 

  • Enatsu, H. (1986). “Quantization of masses of elementary particles with micrononcausal structures,”Nuovo Cimento A 95, 269; Erratum,Nuovo Cimento A 97, 595 (1987).

    Google Scholar 

  • Enatsu, H., and Ihara, C. (1955). “Models of hyperons,”Nuovo Cimento 1, 394.

    Google Scholar 

  • Enatsu, H., and Kawaguchi, S. (1975). “Covariant Hamiltonian formalism for quantized fields and the hydrogen mass levels,”Nuovo Cimento 27, 458.

    Google Scholar 

  • Enatsu, H., Takenaka, A., and Okazaki, M. (1978). “Micrononcausal Euclidean wave functions for hadrons,”Nuovo Cimento 43, 575.

    Google Scholar 

  • Evans, A. B. (1989). “Four-space formulation of Dirac's equation,”Found. Phys. Lett. 2, 499.

    Google Scholar 

  • Evans, A. B. (1990). “Four-space formulation of Dirac's equation,”Found. Phys. 20, 309.

    Google Scholar 

  • Evans, A. B. (1991). “Klein's paradox in a four-space formulation of Dirac's equation,”Found. Phys. 21, 633.

    Google Scholar 

  • Falk, G. (1952). “A canonical formulation of relativistic mechanics and its quantum theoretic analog,”Z. Phys. 132, 44.

    Google Scholar 

  • Fanchi, J. R. (1979). “A generalized quantum field theory,”Phys. Rev. D 20, 3108.

    Google Scholar 

  • Fanchi, J. R. (1981a). “Critique of conventional relativistic quantum mechanics,”Am. J. Phys. 49, 850.

    Google Scholar 

  • Fanchi, J. R. (1981b). “4-space formulation of field equations for multicomponent eigenfunctions,”J. Math. Phys. 22, 794.

    Google Scholar 

  • Fanchi, J. R. (1981c). “Resolution of the Klein paradox for spin-1/2 particles,”Found. Phys. 11, 493.

    Google Scholar 

  • Fanchi, J. R. (1986). “Parametrizing relativistic quantum mechanics,”Phys. Rev. A 34, 1677.

    Google Scholar 

  • Fanchi, J. R. (1987). “Entropy and time(s),”Phys. Rev. A 35, 4859.

    Google Scholar 

  • Fanchi, J. R. (1988). “Cosmological implications of the Gibbs ensemble in parametrized relativistic classical mechanics,”Phys. Rev. A 37, 3956.

    Google Scholar 

  • Fanchi, J. R. (1990). “Tachyon kinematics in parametrized relativistic quantum mechanics,”Found. Phys. 20, 189.

    Google Scholar 

  • Fanchi, J. R., and Collins, R. E. (1978). “Quantum mechanics of relativistic spinless particles,”Found. Phys. 8, 851.

    Google Scholar 

  • Fanchi, J. R., and Wilson, W. J. (1983). “Relativistic many-body systems: evolution-parameter formalism,”Found. Phys. 13, 571.

    Google Scholar 

  • Feynman, R. P. (1948a). “A relativistic cut-off for classical electrodynamics,”Phys. Rev. 74, 939.

    Google Scholar 

  • Feynman, R. P. (1948b). “Space-time approach to non-relativistic quantum mechanics,”Rev. Mod. Phys. 20, 367.

    Google Scholar 

  • Feynman, R. P. (1949a). “The theory of positrons,”Phys. Rev. 76, 749.

    Google Scholar 

  • Feynman, R. P. (1949b). “Space-time approach to quantum electrodynamics,”Phys. Rev. 76, 769.

    Google Scholar 

  • Feynman, R. P. (1950). “Mathematical formulation of the quantum theory of electromagnetic interaction,”Phys. Rev. 80, 440.

    Google Scholar 

  • Feynman, R. P. (1951). “An operator calculus having applications in quantum electrodynamics,”Phys. Rev. 84, 108.

    Google Scholar 

  • Feynman, R. P., Kislinger, M., and Ravndal, F. (1971): “Current matrix elements from a relativistic quark model,”Phys. Rev. D 3, 2706.

    Google Scholar 

  • Fock, V. (1937). “The proper time in classical and quantum mechanics,”Phys. Z. Sowjetunion 12, 404.

    Google Scholar 

  • Francisco, G. (1986). “The behavior of the gravitational field near the initial singularity,”Gen. Relativ. Gravit. 18, 287.

    Google Scholar 

  • Fujii, T. (1988). “Quantization of the mass of the Z-boson in the Weinberg-Salam theory,”Nuovo Cimento A 100, 803.

    Google Scholar 

  • Fujii, T., and Enatsu, H. (1988). “Quantization of the mass of the W-boson in the Weinberg-Salam theory,”Nuovo Cimento A 99, 783.

    Google Scholar 

  • Garrod, C. (1966). “Hamiltonian path-integral methods,”Rev. Mod. Phys. 38, 483.

    Google Scholar 

  • Garrod, C. (1968). “Covariant Hamiltonian dynamics with interactions,”Phys. Rev. 167, 1143.

    Google Scholar 

  • Garuccio, A., Kyprianidis, A., and Vigier, J. P. (1984). “Relativistic predictive quantum potential: the N-body case,”Nuovo Cimento B 83, 135.

    Google Scholar 

  • Gilson, J. G. (1968). “On stochastic theories of quantum mechanics,”Proc. Cambridge Philos. Soc. 64, 1061.

    Google Scholar 

  • Greenberger, D. M. (1963). “The scale transformation in physics,”Ann. Phys. (N.Y.)25, 290.

    Google Scholar 

  • Greenberger, D. M. (1970a). “Theory of particles with variable mass. I. Formalism,”J. Math. Phys. 11, 2329.

    Google Scholar 

  • Greenberger, D. M. (1970b). “Theory of particles with variable mass. II. Some physical consequences,”J. Math. Phys. 11, 2341.

    Google Scholar 

  • Greenberger, D. M. (1974a). “Some useful properties of a theory of variable mass particles,”J. Math. Phys. 15, 395.

    Google Scholar 

  • Greenberger, D. M. (1974b). “Wavepackets for particles of indefinite mass,”J. Math. Phys. 15, 406.

    Google Scholar 

  • Greenberger, D. M. (1988). “The equivalence principle meets the uncertainty principle,”Ann. Inst. Henri Poincaré 49, 307.

    Google Scholar 

  • Grelland, H. H. (1981). “An Einstein relativistic atomic and molecular model based on the Horwitz-Piron-Reuse theory,”Intl. J. Quant. Chem. 19, 873.

    Google Scholar 

  • Guerra, F., and Mana, R. (1983). “Origin of the quantum observable operator algebra in the frame of stochastic mechanics,”Phys. Rev. D 28, 1916.

    Google Scholar 

  • Guerra, F., and Ruggiero, P. (1978). “A note on relativistic Markov processes,”Lett. Nuovo Cimento 23, 529.

    Google Scholar 

  • Hamaguchi, M. (1954). “The generalization of Stueckelberg's formalism in the theory of quantized field,”Prog. Theor. Phys. 11, 461.

    Google Scholar 

  • Hartle, J. B., and Hawking, S. W. (1976). “Path-integral derivation of black-hole radiance,”Phys. Rev. D 13, 2188.

    Google Scholar 

  • Herdegen, A. (1982). “A model of relativistic quantum mechanics,”Acta Phys. Pol. B 13, 863.

    Google Scholar 

  • Holland, P. R., Kyprianidis, A., and Vigier, J. P. (1987). “Trajectories and causal phase-space approach to relativistic quantum mechanics,”Found. Phys. 17, 531.

    Google Scholar 

  • Horsley, R., and Schoenmaker, W. (1985). “Fermions and stochastic quantization,”Phys. Rev. D 31, 822.

    Google Scholar 

  • Horwitz, L. P. (1984). “On the electromagnetic interaction in relativistic quantum mechanics,”Found. Phys. 14, 1027.

    Google Scholar 

  • Horwitz, L. P., and Arshansky, R. (1982). “On relativistic quantum theory for particles with spin 1/2,”J. Phys. A 15, L659.

    Google Scholar 

  • Horwitz, L. P., and Lavie, Y. (1982). “Scattering theory in relativistic quantum mechanics,”Phys. Rev. D 26, 819.

    Google Scholar 

  • Horwitz, L. P., and Piron, C. (1973). “Relativistic dynamics,”Helv. Phys. Acta 46, 316.

    Google Scholar 

  • Horwitz, L. P., and Rabin, Y. (1976). “Relativistic diffraction,”Lett. Nuovo Cimento 17, 501.

    Google Scholar 

  • Horwitz, L. P., and Rohrlich, F. (1981). “Constraint relativistic quantum dynamics,”Phys. Rev. D 24, 1528.

    Google Scholar 

  • Horwitz, L. P., and Rohrlich, F. (1982). “Scattering in constraint relativistic quantum dynamics,”Phys. Rev. D 26, 3452.

    Google Scholar 

  • Horwitz, L. P., and Rohrlich, F. (1985). “Limitations of constraint dynamics,”Phys. Rev. D 31, 932.

    Google Scholar 

  • Horwitz, L. P., and Rotbart, F. C. (1981). “Nonrelativistic limit of relativistic quantum mechanics,”Phys. Rev. D 24, 2127.

    Google Scholar 

  • Horwitz, L. P., and Soffer, A. (1980). “On the existence of the wave operator in relativistic quantum scattering theory,”Helv. Phys. Acta 53, 112.

    Google Scholar 

  • Horwitz, L. P., and Usher, M. (1991). “Localizability and causal propagation in relativistic quantum mechanics,”Found. Phys. Lett. 4, 289.

    Google Scholar 

  • Horwitz, L. P., Piron, C., and Reuse, F. (1975). “Relativistic dynamics for the spin 1/2 particle,”Helv. Phys. Acta 48, 546.

    Google Scholar 

  • Horwitz, L. P., Schieve, W. C., and Piron, C. (1981). “Gibbs ensembles in relativistic classical and quantum mechanics,”Ann. Phys. (N.Y.)137, 306.

    Google Scholar 

  • Horwitz, L. P., Arshansky, R. I., and Elitzur, A. C. (1988). “On the two aspects of time: the distinction and its implications,”Found. Phys. 18, 1159.

    Google Scholar 

  • Horwitz, L. P., Shashoua, S., and Schieve, W. C. (1989). “A manifestly covariant relativistic Boltzmann equation for the evolution of a system of events,”Physica A 161, 300.

    Google Scholar 

  • Hostler, L. (1980). “Quantum field theory of particles of indefinite mass. I,”J. Math. Phys. 21, 2461.

    Google Scholar 

  • Hostler, L. (1981). “Quantum field theory of particles of indefinite mass. II. An electromagnetic model,”J. Math. Phys. 22, 2307.

    Google Scholar 

  • Hostler, L. (1985). “Quantum theory of particles of indefinite mass: spin-1/2,”J. Math. Phys. 26, 2666.

    Google Scholar 

  • Iranzo, V., Llosa, J., Molina, A., and Marques, F. (1983). “Comparison of several approaches to the relativistic dynamics of directly interacting particles,”Ann. Phys. (N.Y.)150, 114.

    Google Scholar 

  • Itoh, C., Kenmoku, M., and Minamikawa, T. (1971). “Canonical quantization of the proper time formalism in the dual resonance model,”Prog. Theor. Phys. 45, 1607.

    Google Scholar 

  • Johnson, J. E. (1969). “Position operators and proper time in relativistic quantum mechanics,”Phys. Rev. 181, 1755.

    Google Scholar 

  • Johnson, J. E. (1971). “Proper-time quantum mechanics. II,”Phys. Rev. D 3, 1735.

    Google Scholar 

  • Johnson, J. E., and Chang, K. K. (1974). “Exact diagonalization of the Dirac Hamiltonian in an external field,”Phys. Rev. D 10, 2421.

    Google Scholar 

  • Kaloyerou, P. N., and Vigier, J. P. (1989). “Evolution time Klein-Gordon equation and derivation of its nonlinear counterpart,”J. Phys. A 22, 663.

    Google Scholar 

  • Karplus, R., and Klein, A. (1952). “Electrodynamic displacement of atomic energy levels. I. Hyperfine structure,”Phys. Rev. 85, 972.

    Google Scholar 

  • Karplus, R., Klein, A., and Schwinger, J. (1952). “Electrodynamic displacement of atomic energy levels. II. Lamb shift,”Phys. Rev. 86, 288.

    Google Scholar 

  • Katayama, Y. (1951). “On the positron theory of vacuum,”Prog. Theor. Phys. 6, 309.

    Google Scholar 

  • Katayama, Y., Sawada, K., and Takagi, S. (1950): “Five-dimensional approach to regularized quantum electrodynamics,”Prog. Theor. Phys. V, 14.

    Google Scholar 

  • Kim, Y. S., and Noz, M. E. (1986).Theory and Applications of the Poincaré Group (Reidel, Dordrecht-Boston).

    Google Scholar 

  • King, M. J., and Rohrlich, F. (1980). “Relativistic Hamiltonian dynamics. II. Momentum-dependent interactions, confinement and quantization,”Ann. Phys. (N.Y.)130, 350.

    Google Scholar 

  • Klein, O. (1929). “The reflection of an electron at a potential well in the relativistic dynamics of Dirac,”Z. Phys. 53, 157.

    Google Scholar 

  • Kubo, R. (1985). “Five-dimensional formulation of quantum field theory with an invariant parameter,”Nuovo Cimento A 85, 293.

    Google Scholar 

  • Kuhn, T. S. (1970).The Structure of a Scientific Revolution (University of Chicago Press, Chicago).

    Google Scholar 

  • Kyprianidis, A. (1987). “Scalar time parametrization of relativistic quantum mechanics: the covariant Schrödinger formalism,”Phys. Rep. 155, 1.

    Google Scholar 

  • Kyprianidis, A., and Sardelis, D. (1984). “A H-theorem in the causal stochastic interpretation of quantum mechanics,”Lett. Nuovo Cimento 39, 337.

    Google Scholar 

  • Land, M. C., and Horwitz, L. P. (1991). “Green's functions for off-shell electromagnetism and spacelike correlations,”Found. Phys. 21, 299.

    Google Scholar 

  • Lebedev, S. L. (1986). “Gamow states and imaginary proper time in Fock-Stueckelberg relativistic quantum mechanics,”Sov. J. Nucl. Phys. 42, 880.

    Google Scholar 

  • Lee, C., Lee, T., and Min, H. (1989). “Generalized Schwinger-DeWitt expansions and effective field theories,”Phys. Rev. D 39, 1701.

    Google Scholar 

  • Leutwyler, H. (1965). “A no-interaction theorem in classical relativistic Hamiltonian mechanics,”Nuovo Cimento 37, 556.

    Google Scholar 

  • Llosa, J., editor (1982).Relativistic Action at a Distance: Classical and Quantum Aspects (Lecture Notes in Physics162) (Springer-Verlag, Berlin).

    Google Scholar 

  • Lopez, C. A., and Perez, M. A. (1981). “Extension of a space-time formalism in relativistic quantum mechanics,”Lett. Nuovo Cimento 30, 173.

    Google Scholar 

  • Maddox, J. (1987). “Making quantum mechanics relativistic,”Nature (London) 330, 203.

    Google Scholar 

  • Mano, K. (1955). “The self-energy of the scalar nucleon,”Prog. Theor. Phys. 14, 435.

    Google Scholar 

  • Manogue, C. A. (1988). “The Klein paradox and superradiance,”Ann. Phys. (N.Y.) 181, 261.

    Google Scholar 

  • Marnelius, R. (1982). “Introduction to the quantization of general gauge theories,”Acta Phys. Pol. B 13, 669.

    Google Scholar 

  • Miller, D. E., and Suhonen, E. (1982). “Relativistic ensembles and the mass spectrum,”Phys. Rev. D 26, 2944.

    Google Scholar 

  • Miura, T. (1979). “Relativistic path integrals,”Prog. Theor. Phys. 61, 1521.

    Google Scholar 

  • Miyamoto, Y. (1970). “Veneziano model and proper-time formulation,”Prog. Theor. Phys. 43, 564.

    Google Scholar 

  • Molzahn, F. H., Osborn, T. A., and Fulling, S. A. (1990). “Gauge invariant asymptotic expansion of Schrödinger propagators on manifolds,”Ann. Phys. (N.Y.)204, 64.

    Google Scholar 

  • Morette, C. (1951). “On the definition and approximation of Feynman's path integral,”Phys. Rev. 81, 848.

    Google Scholar 

  • Moses, H. E. (1969). “Covariant space-time operators, infinite-component wavefunctions, and proper-time Schrödinger equations,”Ann. Phys. (N.Y.)52, 444.

    Google Scholar 

  • Moylan, P. (1983). “Unitary representations of the (4+1)-de Sitter group on irreducible representation spaces of the Poincaré group,”J. Math. Phys. 24, 2706.

    Google Scholar 

  • Nagano, T. (1959). “Quantum field theory in terms of Euclidean parameters,”Prog. Theor. Phys. 21, 241.

    Google Scholar 

  • Nakagomi, T. (1988). “Relativistic random walks intrinsic to the walker,”Prog. Theor. Phys. 80, 1988.

    Google Scholar 

  • Nakagomi, T. (1989). “Relativistic random motion parametrized by observer's time,”Prog. Theor. Phys. 81, 916.

    Google Scholar 

  • Nambu, Y. (1950). “The use of the proper time in quantum electrodynamics I.,”Prog. Theor. Phys. V, 82.

    Google Scholar 

  • Namsrai, Kh. (1981). “A stochastic model for the motion of two relativistic particles,”J. Phys. A 14, 1307.

    Google Scholar 

  • Namsrai, Kh. (1986).Non-local Quantum Field Theory and Stochastic Quantum Mechanics (Reidel, Dordrecht).

    Google Scholar 

  • Nelson, E. (1966). “Derivation of the Schrödinger equation from Newtonian mechanics,”Phys. Rev. 150, 1079.

    Google Scholar 

  • Nelson, E. (1967).Dynamical Theories of Brownian Motion (Princeton University Press, Princeton).

    Google Scholar 

  • Nelson, E. (1985).Quantum Fluctuations (Princeton University Press, Princeton).

    Google Scholar 

  • Noga, M. (1970). “Critique of a proposed dynamical group for relativistic quantum mechanics,”Phys. Rev. D 2, 304.

    Google Scholar 

  • Omote, M., Kamafuchi, S., Takahashi, Y., and Ohnuki, Y. (1989). “Galilean invariance and the Schrödinger equation,”Fortsch. Phys. 37, 933.

    Google Scholar 

  • Parisi, G., and Wu, Y.-S. (1981). “Perturbation theory without gauge fixing,”Sci. Sin. 24, 483.

    Google Scholar 

  • Pauli, W., and Villars, F. (1949). “On the invariant regularization in relativistic quantum theory,”Rev. Mod. Phys. 21, 434.

    Google Scholar 

  • Pavsic, M. (1984). “On the quantization of the world-line,”Nuovo Cimento A 82, 443.

    Google Scholar 

  • Pavsic, M. (1985). “On the quantization of gravity by embedding spacetime in a higher dimensional space,”Class. Quantum Gravit. 2, 869.

    Google Scholar 

  • Pavsic, M. (1986). “Canonical formalism and quantization of world-line in a curved background metric,”Nuovo Cimento A 93, 291.

    Google Scholar 

  • Pavsic, M. (1987). “Phase space action for minimal surfaces of any dimension in curved spacetime,”Phys. Lett. B 197, 327.

    Google Scholar 

  • Pavsic, M. (1991a). “On the interpretation of the relativistic quantum mechanics with invariant evolution parameter,”Found. Phys. 21, 1005.

    Google Scholar 

  • Pavsic, M. (1991b). “Relativistic quantum mechanics and quantum field theory with invariant evolution parameter,”Nuovo Cimento A 104, 1337.

    Google Scholar 

  • Pearle, P. M. (1968). “Relativistic classical mechanics with time as a dynamical variable,”Phys. Rev. 168, 1429.

    Google Scholar 

  • Piron, C., and Reuse, F. (1978). “Relativistic dynamics for the spin 1/2 particle,”Helv. Phys. Acta 51, 146.

    Google Scholar 

  • Plyushchay, M. S. (1990). “Relativistic particle with arbitrary spin in a non-grassmannian approach,”Phys. Lett. B 248, 299.

    Google Scholar 

  • Rafanelli, K., and Schiller, R. (1964). “Classical motions of spin-1/2 particles,”Phys. Rev. 135, B279.

    Google Scholar 

  • Ravndal, F. (1980). “Supersymmetric Dirac particles in external fields,”Phys. Rev. D 21, 2823.

    Google Scholar 

  • Reuse, F. (1978). “A new relativistic model for the hydrogen atom,”Helv. Phys. Acta 51, 157.

    Google Scholar 

  • Reuse, F. (1979). “On classical and quantum relativistic dynamics,”Found. Phys. 9, 865.

    Google Scholar 

  • Reuse, F. (1980a). “A relativistic two-body model for hydrogen-like and positronium-like systems I,”Helv. Phys. Acta 53, 416 (spin not considered).

    Google Scholar 

  • Reuse, F. (1980b). “A relativistic two-body model for hydrogen-like and positronium-like systems II,”Helv. Phys. Acta 53, 552 (spin considered).

    Google Scholar 

  • Rohrlich, F. (1979). “Relativistic Hamiltonian dynamics. I. Classical mechanics,”Ann. Phys. (N.Y.)117, 292.

    Google Scholar 

  • Rohrlich, F. (1982a). “Constraint Relativistic canonical particle dynamics,” inRelativistic Action at a Distance: Classical and Quantum Aspects (Lecture Notes in Physics162), J. Llosa, ed. (Springer-Verlag, Berlin), p. 190.

    Google Scholar 

  • Rohrlich, F. (1982b). “Evolution and covariance in constraint dynamics,”Phys. Rev. D 25, 2576.

    Google Scholar 

  • Rumpf, H. (1983). “Mass-analytic quantization, uniform acceleration, and black-hole space-time,”Phys. Rev. D 28, 2946.

    Google Scholar 

  • Saad, D., Horwitz, L. P., and Arshansky, R. I. (1989). “Off-shell electromagnetism in manifestly covariant relativistic quantum mechanics,”Found. Phys. 19, 1125.

    Google Scholar 

  • Salpeter, E. E., and Bethe, H. A. (1951). “A relativistic equation for bound-state problems,”Phys. Rev. 84, 1232.

    Google Scholar 

  • Salisbury, D. C., and Pollot, M. (1989). “Quantum relativistic action at a distance,”Found. Phys. 19, 1441.

    Google Scholar 

  • Samuel, J. (1982a). “Constraints in relativistic Hamiltonian mechanics,”Phys. Rev. D 26, 3475.

    Google Scholar 

  • Samuel, J. (1982b). “Relativistic particle models with separable interactions,”Phys. Rev. D 26, 3482.

    Google Scholar 

  • Sazdjian, H. (1987). “The connection of two-particle relativistic quantum mechanics with the Bethe-Salpeter equation,”J. Math. Phys. 28, 2618.

    Google Scholar 

  • Scadron, M. D. (1979).Advanced Quantum Theory and Its Applications Through Feynman Diagrams (Springer, New York).

    Google Scholar 

  • Schieve, W. C., and Horwitz, L. P. (1991). “Chaos in the classical relativistic mechanics of a damped Duffing-like driven system,”Phys. Lett. A 156, 140.

    Google Scholar 

  • Schonberg, M. (1954). “A non-linear generalization of the Schrödinger and Dirac equations,”Nuovo Cimento 11, 674.

    Google Scholar 

  • Schwinger, J. (1951). “On gauge invariance and vacuum polarization,”Phys. Rev. 82, 664.

    Google Scholar 

  • Schwinger, J. (1959). “Euclidean quantum electrodynamics,”Phys. Rev. 115, 721.

    Google Scholar 

  • Serva, M. (1988). “Relativistic stochastic processes associated to Klein-Gordon equation,”Ann. Inst. Henri Poincaré 49, 415.

    Google Scholar 

  • Shifman, M. A. (1980). “Wilson loop in vacuum fields,”Nucl. Phys. B 173, 13.

    Google Scholar 

  • Shirafuji, T. (1970). “Off-shell functions of the dual-resonance,”Prog. Theor. Phys. 44, 823.

    Google Scholar 

  • Shirafuji, T. (1971). “Generalized transformation functional of a continuum model of the dual amplitude,”Prog. Theor. Phys. 46, 1218.

    Google Scholar 

  • Steeb, W.-H., and Miller, D. E. (1982). “Relativistic classical mechanics and canonical formalism,”Found. Phys. 12, 531.

    Google Scholar 

  • Stephens, C. R. (1988). “Non-perturbative background field calculations,”Ann. Phys. (N.Y.)181, 120.

    Google Scholar 

  • Stephens, C. R. (1989). “The Hawking effect in abelian gauge theories,”Ann. Phys. (N.Y.)193, 255.

    Google Scholar 

  • Stueckelberg, E. C. G. (1941a). “A new model of the ‘punctual’ electron in classical theory,”Helv. Phys. Acta 14, 51.

    Google Scholar 

  • Stueckelberg, E. C. G. (1941b). “The significance of proper time in wave mechanics,”Helv. Phys. Acta 14, 322.

    Google Scholar 

  • Stueckelberg, E. C. G. (1941c). “Remarks about the creation of pairs of particles in the theory of relativity,”Helv. Phys. Acta 14, 588.

    Google Scholar 

  • Stueckelberg, E. C. G. (1942). “The mechanics of point particles in the theory of relativity and the quantum theory,”Helv. Phys. Acta 15, 23.

    Google Scholar 

  • Sundermeyer, K. (1982).Constrained Dynamics (Lecture Notes in Physics169) (Springer, Berlin).

    Google Scholar 

  • Szamosi, G. (1961). “A covariant formulation of quantum mechanics. I,”Nuovo Cimento 20, 1090.

    Google Scholar 

  • Takano, Y. (1961). “The singularity of propagators in field theory and the structure of space-time,”Prog. Theor. Phys. 26, 304.

    Google Scholar 

  • Takenaka, A. (1986). “Micrononcausal Euclidean wave functions for mesons by assuming ‘Yukawa Type’ couplings,”Nuovo Cimento A 94, 367.

    Google Scholar 

  • Takenaka, A. (1989). “Micrononcausal Euclidean wave functions for hadrons in the quark model,”Nuovo Cimento A 101, 631.

    Google Scholar 

  • Takenaka, A. (1990). “Micrononcausal Euclidean wave functions for quarks and leptons,”Nuovo Cimento A 103, 1711.

    Google Scholar 

  • Tetrode, H. (1922). “About the action principle (connection) of the world. An expansion of classical dynamics,Z. Phys. 10, 317.

    Google Scholar 

  • Thaller, B. (1981). “Proper-time quantum-mechanics and the Klein paradox,”Lett. Nuovo Cimento 31, 439.

    Google Scholar 

  • Todorov, I. T. (1982). “Constraint Hamiltonian mechanics of directly interacting relativistic particles,” inRelativistic Action at a Distance: Classical and Quantum Aspects (Lecture Notes in Physics162), J. Llosa, ed. (Springer, Berlin), p. 213.

    Google Scholar 

  • Valatin, J. G. (1954). “Singularities of electron kernel functions in an external electromagnetic field,”Proc. R. Soc. London A 222, 93.

    Google Scholar 

  • Vatsya, S. R. (1989). “Gauge-theoretical origin of mechanics,”Can. J. Phys. 67, 634.

    Google Scholar 

  • Vigier, J. P. (1979). “Model of quantum statistics in terms of a fluid with irregular stochastic fluctuations propagating at the velocity of light: a derivation of Nelson's equations,”Lett. Nuovo Cimento 24, 265.

    Google Scholar 

  • Vigier, J. P. (1991). “Explicit mathematical construction of relativistic nonlinear de Broglie waves described by three-dimensional (wave and electromagnetic) solitons ‘piloted’ (controlled) by corresponding solutions of associated linear Klein-Gordon and Schrödinger equations,”Found. Phys. 21, 125.

    Google Scholar 

  • Wall, E. L. (1989). “On pion resonances and mesons, time cancellation, and neutral particles,”Hadronic J. 12, 309.

    Google Scholar 

  • Wergeland, H. (1982). “The Klein paradox revisited,” inOld and New Questions in Physics, Cosmology, Philosophy, and Theoretical Biology, A. van der Merwe, ed. (Plenum, New York), p. 503.

    Google Scholar 

  • Wong, S. K. (1972). “Heisenberg equations of motion for spin-1/2 wave equation in general relativity,”Int. J. Theor. Phys. 5, 221.

    Google Scholar 

  • Yang, C. N., and Mills, R. L. (1954). “Conservation of isotopic spin and isotopic gauge invariance,”Phys. Rev. 96, 191.

    Article  Google Scholar 

  • Yasue, K. (1977). “Derivation of relativistic wave equations in the theory of elementary domains,”Prog. Theor. Phys. 57, 318.

    Google Scholar 

  • Zuk, J. A. (1986). “Covariant-derivative expansion of the effective action and the Schwinger-Fock gauge condition,”Phys. Rev. D 34, 1791.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fanchi, J.R. Review of invariant time formulations of relativistic quantum theories. Found Phys 23, 487–548 (1993). https://doi.org/10.1007/BF01883726

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01883726

Keywords

Navigation