Foundations of Physics

, Volume 23, Issue 9, pp 1265–1288 | Cite as

Classical limit of real Dirac theory: Quantization of relativistic central field orbits

  • Heinz Krüger
Part I. Invited Papers Dedicated To David Hestenes


The classical limit of real Dirac theory is derived as the lowest-order contribution in\(\mathchar'26\mkern-10mu\lambda = \hslash /mc\) of a new, exact polar decomposition. The resulting classical spinor equation is completely integrated for stationary solutions to arbitrary central fields. Imposing single-valuedness on the covering space of a bivector-valued extension to these classical solutions, orbital angular momentum, energy, and spin directions are quantized. The quantization of energy turns out to yield the WKB formula of Bessey, Uhlenbeck, and Good. It is demonstrated that the success of Sommerfeld's old quantization is due to a complete mutual cancellation between wave mechanical half-integers and spin in the particular case of the relativistic Kepler problem.


Angular Momentum Stationary Solution Classical Solution Orbital Angular Momentum Classical Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Hestenes, “Observables, operators, and complex numbers in the Dirac theory,”J. Math. Phys. 16, 556–572 (1975).Google Scholar
  2. 2.
    D. Hestenes, “The Zitterbewegung interpretation of quantum mechanics,”Found. Phys. 20, 1213–1232 (1990).Google Scholar
  3. 3.
    D. Hestenes, “A unified language for mathematics and physics,” inClifford Algebras and Their Applications in Mathematical Physics, J. S. R. Chisholm and A. K. Common (eds.) (Reidel, Dordrecht, 1986), pp. 1–24.Google Scholar
  4. 4.
    D. Hestenes and G. Sobczyk,Clifford Algebra to Geometric Calculus (Reidel, Dordrecht, 1984).Google Scholar
  5. 5.
    D. Hestenes, “Real spinor fields,”J. Math. Phys. 8, 798–808 (1967), Section 4.Google Scholar
  6. 6.
    D. Hestenes, “Local observables in the Dirac theory,”J. Math. Phys. 14, 893–905 (1973), Section 5.Google Scholar
  7. 7.
    G. Lochak, “Wave equation for a magnetic monopole,”Int. J. Theor. Phys. 24, 1019–1050 (1985), Section 12.Google Scholar
  8. 8.
    J. Yvon, “Equations de Dirac-Madelung,”J. Phys. Radium 1, 18–24 (1940).Google Scholar
  9. 9.
    T. Takabayashi, “Relativistic hydrodynamics of the Dirac matter,”Prog. Theor. Phys. Suppl. 4, 1–80 (1957).Google Scholar
  10. 10.
    A Proca, “Sur la méchanique spinorielle du point chargé,”J. Phys. Radium 17, 81–84 (1956).Google Scholar
  11. 11.
    D. Hestenes, “Proper dynamics of a rigid point particle,”J. Math. Phys. 15, 1778–1786 (1974).Google Scholar
  12. 12.
    D. Bohm and B. J. Hiley, “Measurement understood through the quantum potential approach,”Found. Phys. 14, 255–274 (1984).Google Scholar
  13. 13.
    H. C. Lee, “On plane factorizations of pseudo-Euclidean rotations,”Qt. J. Math. 15, 7–10 (1944).Google Scholar
  14. 14.
    D. Hestenes,New Foundations for Classical Mechanics (Reidel, Dordrecht, 1986), pp. 460–462.Google Scholar
  15. 15.
    V. P. Maslov and M. V. Fedoriuk,Semiclassical Approximation in Quantum Mechanics (Reidel, Dordrecht, 1981), p. 78.Google Scholar
  16. 16.
    R. Abraham and J. E. Marsden,Foundations of Mechanics (Benjamin/Cummings, Reading, Massachusetts, 1980), 2nd edn., p. 95.Google Scholar
  17. 17.
    J. O. Hirschfelder and K. T. Tang, “Quantum mechanical streamlines. IV. Collision of two spheres with square potential wells or barriers,”J. Chem. Phys. 65, 470–486 (1976).Google Scholar
  18. 18.
    J. B. Keller, “Corrected Bohr-Sommerfeld quantum conditions for nonseparable systems,”Ann. Phys. (N.Y.) 4, 180–188 (1958).Google Scholar
  19. 19.
    B. Ju. Sternin, “On quantization conditions in the complex theory of Maslov's canonical operator. The complex theory of Fourier integral operators,”Sov. Math. Dokl. 18, 250–254 (1977).Google Scholar
  20. 20.
    D. Hestenes, “Quantum mechanics from self-interaction,”Found. Phys. 15, 63–87 (1985).Google Scholar
  21. 21.
    R. H. Good, Jr., “The generalization of the WKB method to radial wave equations,”Phys. Rev. 90, 131–137 (1953).Google Scholar
  22. 22.
    A. Sommerfeld, “Zur Quantentheorie der Spekttrallinien,”Ann. Phys. (Leipzig) 51, 1–94 (1916), see pp. 52–54.Google Scholar
  23. 23.
    S. I. Rubinow and J. B. Keller, “Asymptotic solution of the Dirac equation,”Phys. Rev. 131, 2789–2796 (1963).Google Scholar
  24. 24.
    K. Rafanelli and R. Schiller, “Classical motions of spin-1/2 particles,”Phys. Rev. B 135, 279–281 (1964).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Heinz Krüger
    • 1
  1. 1.Fachbereich Physik der UniversitätKaiserslauterGermany

Personalised recommendations