Advertisement

Foundations of Physics

, Volume 23, Issue 9, pp 1239–1264 | Cite as

States and operators in the spacetime algebra

  • Chris Doran
  • Anthony Lasenby
  • Stephen Gull
Part I. Invited Papers Dedicated To David Hestenes

Abstract

The spacetime algebra (STA) is the natural, representation-free language for Dirac's theory of the electron. Conventional Pauli, Dirac, Weyl, and Majorana spinors are replaced by spacetime multivectors, and the quantum σ- and γ-matrices are replaced by two-sided multivector operations. The STA is defined over the reals, and the role of the scalar unit imaginary of quantum mechanics is played by a fixed spacetime bivector. The extension to multiparticle systems involves a separate copy of the STA for each particle, and it is shown that the standard unit imaginary induces correlations between these particle spaces. In the STA, spinors and operators can be manipulated without introducing any matrix representation or coordinate system. Furthermore, the formalism provides simple expressions for the spinor bilinear covariants which dispense with the need for the Fierz identities. A reduction to2+1 dimensions is given, and applications beyond the Dirac theory are discussed.

Keywords

Coordinate System Quantum Mechanic Matrix Representation Simple Expression Standard Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. D. Bjorken and S. D. Drell,Relativistic Quantum Mechanics, Vol. 1 (McGraw-Hill, New York, 1964).Google Scholar
  2. 2.
    C. Itzykson and J-B. Zuber,Quantum Field Theory (McGraw-Hill, New York, 1980).Google Scholar
  3. 3.
    D. Hestenes,Space-Time Algebra (Gordon & Breach, New York, 1966).Google Scholar
  4. 4.
    D. Hestenes, “Vectors, spinors, and complex numbers in classical and quantum physics,”Am. J. Phys. 39, 1013 (1971).Google Scholar
  5. 5.
    D. Hestenes, “Observables, operators, and complex numbers in the Dirac theory,”J. Math. Phys. 16(3), 556 (1975).Google Scholar
  6. 6.
    D. Hestenes, “Clifford algebra and the interpretation of quantum mechanics,” in J. S. R. Chisholm and A. K. Common, eds.,Clifford Algebras and Their Applications in Mathematical Physics (Reidel, Dordrecht, 1986), p. 321.Google Scholar
  7. 7.
    S. F. Gull, A. N. Lasenby, and C. J. L. Doran, “Electron paths, tunnelling and diffraction in the spacetime algebra,”Found. Phys. 23(10), (1993).Google Scholar
  8. 8.
    R. Penrose and W. Rindler,Spinors and Space-time, Vol. I:Two-spinor Calculus and Relativistic Fields (Cambridge University Press, Cambridge, 1984).Google Scholar
  9. 9.
    S. F. Gull, A. N. Lasenby, and C. J. L. Doran, “Imaginary numbers are not real—the geometric algebra of spacetime,”Found. Phys. 23(9), 1175 (1993).Google Scholar
  10. 10.
    A. N. Lasenby, C. J. L. Doran, and S. F. Gull, “2-spinors, twistors and supersymmetry in the spacetime algebra,” in Z. Oziewicz, A. Borowiec, and B. Jancewicz, eds.,Spinors, Twistors and Clifford Algebras (Kluwer Academic, Dordrecht, 1993), p. 233.Google Scholar
  11. 11.
    D. Hestenes and R. Gurtler, “Consistency in the formulation of the Dirac, Pauli and Schrödinger theories,”J. Math. Phys. 16(3), 573 (1975).Google Scholar
  12. 12.
    D. Hestenes and G. Sobczyk,Clifford Algebra to Geometric Calculus (Reidel, Dordrecht, 1984).Google Scholar
  13. 13.
    R. Penrose and W. Rindler,Spinors and Space-Time, Vol. II:Spinor and Twistor Methods in Space-Time Geometry (Cambridge University Press, Cambridge, 1986).Google Scholar
  14. 14.
    I. W. Benn and R. W. Tucker,An Introduction to Spinors and Geometry (Adam Hilger, London, 1988).Google Scholar
  15. 15.
    V. L. Figueiredo, E. C. de Oliveira, and W. A. Rodrigues, Jr., “Covariant, algebraic, and operator spinors,”Int. J. Theor. Phys. 29(4), 371 (1990).Google Scholar
  16. 16.
    S. F. Gull, “Charged particles at potential steps,” in A. Weingartshofer and D. Hestenes, eds.,The Electron (Kluwer Academic, Dordrecht, 1991), p. 37.Google Scholar
  17. 17.
    A. N. Lasenby, C. J. L. Doran, and S. F. Gull, “A multivector derivative approach to Lagrangian field theory,”Found. Phys. 23(10), (1993).Google Scholar
  18. 18.
    D. Hestenes, “Real Dirac theory,” in preparation, 1993.Google Scholar
  19. 19.
    J. P. Crawford, “On the algebra of Dirac bispinor identities: factorization and inversion theorems,”J. Math. Phys. 26(7), 1439 (1985).Google Scholar
  20. 20.
    J. P. Crawford, “Dirac equation for bispinor densities,” in J. S. R. Chisholm and A. K. Common, eds.,Clifford Algebras and Their Applications in Mathematical Physics (Reidel, Dordrecht, 1986), p. 353.Google Scholar
  21. 21.
    R. P. Feynman,Quantum Electrodynamics (Addison-Wesley, Reading, Massachusetts, 1961).Google Scholar
  22. 22.
    H. A. Bethe and E. E. Salpeter,Quantum Mechanics of One- and Two-Electron Atoms (Springer, New York, 1957).Google Scholar
  23. 23.
    R. P. Martinez-Romero and A. L. Salas-Brito, “Conformal invariance in a Dirac oscillator,”J. Math. Phys. 33(5), 1831 (1992).Google Scholar
  24. 24.
    W. I. Fushchich and R. Z. Zhdanov, “Symmetry and exact solutions of nonlinear spinor equations,”Phys. Rep. 172(4), 125 (1989).Google Scholar
  25. 25.
    C. Daviau and G. Lochak, “Sur un modèle d'équation spinorielle non linéaire,”Ann. Fond. L. de Broglie 16(1), 43 (1991).Google Scholar
  26. 26.
    A. O. Barut and N. Zanghi, “Classical models of the Dirac electron,”Phys. Rev. Lett. 52(23), 2009 (1984).Google Scholar
  27. 27.
    P. West,An Introduction to Supersymmetry and Supergravity (World Scientific, Singapore, 1986).Google Scholar
  28. 28.
    F. Reifler, “A vector wave equation for neutrinos,”J. Math. Phys. 25(4), 1088 (1984).Google Scholar
  29. 29.
    E. Marx, ‘Spinor equations in relativistic quantum mechanics,”J. Math. Phys. 33(6), 2290 (1992).Google Scholar
  30. 30.
    M. S. Plyuschay, “Lagrangian formulation for the massless (super)particles in (super)twistor approach,”Phys. Lett. B 240, 133 (1990).Google Scholar
  31. 31.
    M. S. Plyuschay, “Spin from isospin: The model of a superparticle in a non-Grassmannian approach,”Phys. Lett. B 280, 232 (1992).Google Scholar
  32. 32.
    S. Deser and R. Jackiw, “Statistics without spin. MasslessD = 3 systems,”Phys. Lett. B 263, 431 (1991).Google Scholar
  33. 33.
    N. Salingaros, “On the classification of Clifford algebras and their relation to spinors inn-dimensions,”J. Math. Phys. 23(1), 1 (1982).Google Scholar
  34. 34.
    Z. Hasiewicz, P. Siemion, and F. Defever, “A Bosonic model for particles with arbitrary spin,”Int. J. Mod. Phys. A 7(17), 3979 (1992).Google Scholar
  35. 35.
    G. W. Gibbons, “Kummer's configuration, causal structures and the projective geometry of Majorana spinors,” in Z. Oziewicz, A. Borowiec, and B. Jacewicz, eds.,Spinors, Twistors and Clifford Algebras (Kluwer Academic, Dordrecht, 1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Chris Doran
    • 1
  • Anthony Lasenby
    • 2
  • Stephen Gull
    • 2
  1. 1.DAMTPCambridgeUnited Kingdom
  2. 2.MRAO, Cavendish LaboratoryCambridgeUnited Kingdom

Personalised recommendations