Advertisement

Foundations of Physics

, Volume 21, Issue 1, pp 93–124 | Cite as

Geometro-stochastic locality in quantum spacetime and quantum diffusions

  • Eduard Prugovečki
Part IV. Invited Papers Dedicated To John Stewart Bell

Abstract

The issue of the intrinsic nonlocality of quantum mechanics raised by J. S. Bell is examined from the point of view of the recently developed method of geometro-stochastic quantization and its applications to general relativistic quantum theory. This analysis reveals that a distinction should be made between the topological concept of locality used in formulating relativistic causality and a type of geometric locality based on the concept of fiber bundle, which can be used in extending the strong equivalence principle to the quantum domain. Both play an essential role in formulating a notion of geometro-stochastic propagation based on quantum diffusions, which throws new light on the EPR paradox, on the origin of the arrow of time, and on other fundamental issues in quantum cosmology and the theory of measurement.

Keywords

Quantum Mechanic Essential Role Quantum Theory Relativistic Quantum Relativistic Causality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Einstein, B. Podolsky, and N. Rosen,Phys. Rev. 47, 777 (1935).Google Scholar
  2. 2.
    P. Lahti and P. Mittelstaedt, eds.,Symposium on the Foundations of Modern Physics (World Scientific, Singapore, 1985).Google Scholar
  3. 3.
    G. Tarozzi and A. van der Merwe, eds.,The Nature of Quantum Paradoxes (Kluwer, Dordrecht, 1988).Google Scholar
  4. 4.
    A. van der Merwe, F. Selleri, and G. Tarozzi, eds.,Microphysical Reality and Quantum Formalism (Kluwer, Dordrecht, 1988).Google Scholar
  5. 5.
    J. S. Bell,Physics 1, 195 (1964);Rev. Mod. Phys. 38, 447 (1966).Google Scholar
  6. 6.
    E. P. Wigner, inQuantum Theory and Measurement, J. A. Wheeler and W. H. Zurek, eds. (Princeton University Press, Princeton, 1983).Google Scholar
  7. 7.
    A. Aspect, P. Grangier, and G. Rogers,Phys. Rev. Lett. 47, 460 (1981);49, 1804 (1982).Google Scholar
  8. 8.
    J. S. Bell,Epist. Lett. (1975).Google Scholar
  9. 9.
    L. Accardi, inThe Nature of Quantum Paradoxes, G. Tarozzi and A. van der Merwe, eds. (Kluwer, Dordrecht, 1988).Google Scholar
  10. 10.
    H. Feigl and M. Brodbeck, eds.,Readings on the Philosophy of Science (Appleton-Century-Crofts, New York, 1953), p. 193.Google Scholar
  11. 11.
    E. Prugovečki,Stochastic Quantum Mechanics and Quantum Spacetime (Reidel, Dordrecht, 1984; corrected printing 1986).Google Scholar
  12. 12.
    E. Prugovečki,Nuovo Cimento A 97, 837 (1987).Google Scholar
  13. 13.
    E. Prugovečki,Class. Quantum Grav. 4, 1659 (1987).Google Scholar
  14. 14.
    E. Prugovečki,Nuovo Cimento A 100, 827 (1988);101, 853 (1989).Google Scholar
  15. 15.
    E. Prugovečki,Found. Phys. Lett. 2, 81, 163, 403 (1989).Google Scholar
  16. 16.
    E. Prugovečki and S. Warlow,Found. Phys. Lett. 2, 409 (1989);Rep. Math. Phys. 28, 105 (1990).Google Scholar
  17. 17.
    E. Prugovečki,Nuovo Cimento A 102, 881 (1989).Google Scholar
  18. 18.
    C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation (Freeman, San Francisco, 1973).Google Scholar
  19. 19.
    C. J. Isham, inGeneral Relativity and Gravitation, M. A. H. MacCallum, ed. (Cambridge University Press, Cambridge, 1987).Google Scholar
  20. 20.
    M. A. Markov, inQuantum Gravity, M. A. Markov, V. A. Berezin, and V. P. Frolov, eds. (World Scientific, Singapore, 1988).Google Scholar
  21. 21.
    F. Selleri, inThe Nature of Quantum Paradoxes, G. Tarozzi and A. van der Merwe, eds. (Kluwer, Dordrecht, 1988).Google Scholar
  22. 22.
    A. Schilpp, ed.,Albert Einstein: Philosopher-Scientist (Open Court, Evanston, Illinois, 1949).Google Scholar
  23. 23.
    M. Born,Dan. Mat. Fys. Medd. 30, No. 2 (1955).Google Scholar
  24. 24.
    M. Born,Physics in My Generation (Pergamon Press, London, 1956).Google Scholar
  25. 25.
    N. Bohr,Atomic Physics and Human Knowledge (Science, New York, 1961).Google Scholar
  26. 26.
    E. Prugovečki,Quantum Mechanics in Hilbert Space, 2nd edn. (Academic Press, New York, 1981).Google Scholar
  27. 27.
    E. P. Wigner,Z. Phys. 131, 101 (1952).Google Scholar
  28. 28.
    E. Prugovečki,J. Phys. A: Math. Gen. 10, 543 (1977).Google Scholar
  29. 29.
    P. Busch,Phys. Rev. D 33, 2253 (1986).Google Scholar
  30. 30.
    E. Prugovečki,Found. Phys. 14, 1147 (1984).Google Scholar
  31. 31.
    S. T. Ali,Riv. Nuovo Cimento 8(11), 1 (1985).Google Scholar
  32. 32.
    S. T. Ali and E. Prugovečki,Acta Appl. Math. 6, 1, 19, 47 (1986).Google Scholar
  33. 33.
    G. W. Mackey,Induced Representations of Groups and Quantum Mechanics (Benjamin, New York, 1968).Google Scholar
  34. 34.
    P. Busch, M. Grabowski, and P. J. Lahti,Found. Phys. Lett. 2, 331 (1989).Google Scholar
  35. 35.
    E. Prugovečki,J. Math. Phys. 17, 517, 1673 (1976).Google Scholar
  36. 36.
    P. Busch and P. J. Lahti,Ann. Phys. (Leipzig) 47, 369 (1990).Google Scholar
  37. 37.
    D. M. Healy and F. E. Schroeck, Jr., “Applications of stochastic quantum mechanics and coherent state methodologies to signal processing,” Florida Atlantic University preprint.Google Scholar
  38. 38.
    S. T. Ali and E. Prugovečki,J. Math. Phys. 18, 219 (1977).Google Scholar
  39. 39.
    E. Prugovečki,Int. J. Theor. Phys. 16, 321 (1977).Google Scholar
  40. 40.
    E. Prugovečki,Ann. Phys. (N.Y.) 110, 102 (1978).Google Scholar
  41. 41.
    E. Prugovečki,Physica A 91, 202, 229 (1978).Google Scholar
  42. 42.
    B. Gerlach, D. Gromes, and J. Petzold,Z. Phys. 202, 401 (1967).Google Scholar
  43. 43.
    G. N. Fleming,Phys. Rev. B 139, 963 (1965).Google Scholar
  44. 44.
    G. C. Hegerfeldt,Phys. Rev. D 10, 3320 (1974).Google Scholar
  45. 45.
    N. N. Bogolubov, A. A. Logunov, and I. T. Todorov,Introduction to Axiomatic Quantum Field Theory (Benjamin, Reading, Massachusetts, 1975).Google Scholar
  46. 46.
    Kh. Namsrai,Nonlocal Quantum Field Theory and Stochastic Quantum Mechanics (Reidel, Dordrecht, 1986).Google Scholar
  47. 47.
    J. Glimm and A. Jaffe,Quantum Physics, 2nd edition (Springer, New York, 1987).Google Scholar
  48. 48.
    E. Prugovečki,J. Math. Phys. 19, 2260, 2271 (1978).Google Scholar
  49. 49.
    E. Prugovečki,Phys. Rev. D 18, 3655 (1978).Google Scholar
  50. 50.
    S. T. Ali, R. Gagnon, and E. Prugovečki,Can. J. Phys. 59, 807 (1981).Google Scholar
  51. 51.
    S. T. Ali, J. A. Brooke, P. Busch, R. Gagnon, and F. E. Schroeck, Jr.,Can. J. Phys. 66, 238 (1968).Google Scholar
  52. 52.
    J. Schwinger, ed.,Quantum Electrodynamics (Dover, New York, 1958).Google Scholar
  53. 53.
    B. S. DeWitt,Phys. Rep. 19, 295 (1975).Google Scholar
  54. 54.
    J. V. Narlikar and T. Padmanabhan,Gravity, Gauge Theories and Quantum Cosmology (Reidel, Dordrecht, 1986).Google Scholar
  55. 55.
    N. D. Birrell and P. C. W. Davies,Quantum Fields in Curved Space, corrected printing (Cambridge University Press, Cambridge, 1986).Google Scholar
  56. 56.
    E. Prugovečki,Nuovo Cimento B 62, 17 (1981).Google Scholar
  57. 57.
    R. M. Wald,General Relativity (University of Chicago Press, Chicago, 1984).Google Scholar
  58. 58.
    E. Prugovečki,Nuovo Cimento A 89, 105 (1985);91, 317 (1986);97, 597 (1987).Google Scholar
  59. 59.
    W. Drechsler,Fortschr. Phys. 32, 449 (1984).Google Scholar
  60. 60.
    J. Ehlers, inGeneral Relativity and Gravitation, M. A. H. MacCallum, ed. (Cambridge University Press, Cambridge, 1987).Google Scholar
  61. 61.
    K. Itô,Proc. Int. Congr. Math. Stockholm, 536 (1962).Google Scholar
  62. 62.
    E. B. Dynkin,Sov. Math. Dokl. 179, 532 (1968).Google Scholar
  63. 63.
    Yu. L. Daletskii,Russ. Math. Surv. 38, 97 (1983).Google Scholar
  64. 64.
    S. P. Gudder,Quantum Probability (Academic Press, New York, 1988).Google Scholar
  65. 65.
    L. S. Schulman,Techniques and Applications of Path Integration (Wiley, New York, 1981).Google Scholar
  66. 66.
    B. S. DeWitt,Rev. Mod. Phys. 29, 377 (1957).Google Scholar
  67. 67.
    K. S. Cheng,J. Math. Phys. 13, 1723 (1972).Google Scholar
  68. 68.
    H. P. Künzle and C. Duval,Class. Quantum Grav. 3, 957 (1986).Google Scholar
  69. 69.
    S. De Bievré,Class. Quantum Grav. 6, 731 (1989).Google Scholar
  70. 70.
    M. Namiki, inMicrophysical Reality and Quantum Formalism, A. van der Merwe, F. Selleri, and G. Tarozzi, eds. (Kluwer, Dordrecht, 1988).Google Scholar
  71. 71.
    G. Parisi and Y. S. Wu,Sci. Sin. 24, 483 (1981).Google Scholar
  72. 72.
    M. Namiki, I. Ohba, K. Okano, and Y. Yamanaka,Prog. Theor. Phys. 69, 1580 (1983).Google Scholar
  73. 73.
    E. Nelson,Quantum Fluctuations (Princeton University Press, Princeton, 1986).Google Scholar
  74. 74.
    F. Guerra,Phys. Rep. 77, 263 (1981).Google Scholar
  75. 75.
    S. P. Gudder,Stochastic Methods in Quantum Mechanics (North-Holland, New York, 1979).Google Scholar
  76. 76.
    S. P. Gudder,Found. Phys. 19, 293 (1989).Google Scholar
  77. 77.
    R. L. Hudson and K. R. Parthasarathy, inQuantum Probability and Applications to the Theory of Irreversible Processes, L. Accardi, A. Frigerio, and V. Gorini, eds. (Springer Lecture, Notes in Mathematics, Vol. 1055) (Springer, Berlin, 1984).Google Scholar
  78. 78.
    R. L. Hudson and K. R. Parthasarathy,Commun. Math. Phys. 104, 457 (1986).Google Scholar
  79. 79.
    F. A. Berezin,The Method of Second Quantization (Academic Press, New York, 1964).Google Scholar
  80. 80.
    S. W. Hawking,Phys. Rev. D 32, 2489 (1985).Google Scholar
  81. 81.
    J. B. Hartle,Phys. Rev. D 38, 2985 (1988).Google Scholar
  82. 82.
    I. Prigogine and Y. Elskens, inQuantum Implications, B. J. Hiley and F. D. Peat, eds. (Routledge & Kegan Paul, London, 1987).Google Scholar
  83. 83.
    R. Penrose, inThree Hundred Years of Gravitation, S. W. Hawking and W. Israel, eds. (Cambridge University Press, Cambridge, 1987).Google Scholar
  84. 84.
    H.-H. von Borzeszkowski and H.-J. Treder,The Meaning of Quantum Gravity (Reidel, Dordrecht, 1988).Google Scholar
  85. 85.
    J. S. Bell, inQuantum Implications, B. J. Hiley and F. D. Peat, eds. (Routledge & Kegan Paul, London, 1987).Google Scholar
  86. 86.
    B. DeWitt,Supermanifolds (Cambridge University Press, Cambridge, 1984).Google Scholar
  87. 87.
    F. A. Berezin,Introduction to Superanalysis (Reidel, Dordrecht, 1987).Google Scholar
  88. 88.
    U. Bruzzo and R. Cianci,Class. Quantum Grav. 1, 213 (1984).Google Scholar
  89. 89.
    A. Yu. Khrennikov,Russ. Math. Surv. 43, 103 (1988).Google Scholar
  90. 90.
    H. J. W. Müller-Kirsten and A. Wiedemann,Supersymmetry (World Scientific, Singapore, 1987).Google Scholar
  91. 91.
    A. Trautman, inGeometrical Techniques in Gauge Theories, R. Martini and E. M. De Jager (Springer, Berlin, 1982).Google Scholar
  92. 92.
    L. Bonora, P. Pasti, and M. Tonin,Nuovo Cimento A 64, 307 (1981).Google Scholar
  93. 93.
    L. Bonora, P. Pasti, and M. Tonin,J. Math. Phys. 23, 839 (1982).Google Scholar
  94. 94.
    L. Baulieu,Phys. Rep. 129, 1 (1985).Google Scholar
  95. 95.
    S. W. Hawking and J. B. Hartle,Phys. Rev. D 38, 2960 (1983).Google Scholar
  96. 96.
    S. W. Hawking,Nucl. Phys. B 239, 257 (1984).Google Scholar
  97. 97.
    I. Prigogine,From Being to Becoming (Freeman, San Francisco, 1980).Google Scholar
  98. 98.
    H. Bacry,Localizability and Space in Quantum Physics (Springer Lecture Notes in Physics, Vol. 308) (Springer, Berlin, 1988).Google Scholar
  99. 99.
    W. Heisenberg,Phys. Today 29(3), 32 (1976).Google Scholar
  100. 100.
    E. Prugovečki,Quantum Geometry (Kluwer, Dordrecht), to appear.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Eduard Prugovečki
    • 1
  1. 1.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations