Skip to main content
Log in

Schrödinger's immortal cat

  • Part III. Invited Papers Commemorating The Centenary Of The Birth Of Erwin Schrödinger
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to review and clarify the quantum “measurement problem.” The latter originates in the ambivalent nature of the “observer”: Although the observer is not described by the Schrödinger equation, it should nevertheless be possible to “quantize” him and include him in the wave function if quantum theory is universally valid. The problem is to prove that no contradiction may arise in these two conflicting descriptions. The proof invokes the notion of irreversibility. The validity of the latter is questionable, because the standard rationale for classical irreversibility, namely mixing and coarse graining, does not apply to quantum theory. There is no chaos in a closed, finite quantum system. However, when a system is large enough, it cannot be perfectly isolated from its “environment,” namely from external (or even internal) degrees of freedom which are not fully accounted for in the Hamiltonian of that system. As a consequence, the long-range evolution of such a quantum system is essentially unpredictable. It follows that the notion of irreversibility is a valid one in quantum theory and the “measurement problem” can be brought to a satisfactory solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Schrödinger, “Die Gegenwärtige Situation in der Quantenmechanik,”Naturwissenschaften 23, 807 (1935).

    Google Scholar 

  2. H. P. Stapp, “The Copenhagen interpretation,”Am. J. Phys. 40, 1098 (1972).

    Google Scholar 

  3. J. Rothstein, “Information, measurement, and quantum mechanics,”Science 114, 171 (1951).

    Google Scholar 

  4. J. B. Hartle, “Quantum mechanics of individual systems,”Am. J. Phys. 36, 704 (1968).

    Google Scholar 

  5. L. E. Ballentine, “The statistical interpretation of quantum mechanics,”Rev. Mod. Phys. 42, 358 (1970).

    Google Scholar 

  6. A. Peres, “What is a state vector?”Am. J. Phys. 52, 644 (1984).

    Google Scholar 

  7. A. Peres, “When is a quantum measurement?”Am. J. Phys. 54, 688 (1986).

    Google Scholar 

  8. P. A. M. Dirac,The Principles of Quantum Mechanics (Oxford University Press, Oxford, 1947), p. 36.

    Google Scholar 

  9. D. Bohm,Quantum Theory (Prentice-Hall, Englewood Cliffs, New Jersey, 1951), p. 120.

    Google Scholar 

  10. A. Peres and W. H. Zurek, “Is quantum theory universally valid?”Am. J. Phys. 50, 807 (1982).

    Google Scholar 

  11. H. Everett, III, “Relative state formulation of quantum mechanics,”Rev. Mod. Phys. 29, 454 (1957).

    Google Scholar 

  12. A. Peres, “The classic paradoxes of quantum theory,”Found. Phys. 14, 1131 (1984).

    Google Scholar 

  13. M. A. B. Whitaker, “The relative states and many-worlds interpretations of quantum mechanics and the EPR problem,”J. Phys. A 18, 253 (1985).

    Google Scholar 

  14. A. Peres, “Quantum measurements are reversible,”Am. J. Phys. 42, 886 (1974).

    Google Scholar 

  15. D. Deutsch, “Quantum theory as a universal physical theory,”Int. J. Theor. Phys. 24, 1 (1985).

    Google Scholar 

  16. J. von Neumann,Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, New Jersey, 1955) [translated from “Mathematische Grundlagen der Quantenmechanik,” Springer, Berlin, 1932].

    Google Scholar 

  17. F. W. London and E. Bauer,La théorie de l'observation en mécanique quantique (Hermann, Paris, 1939).

    Google Scholar 

  18. A. Peres, “Can we undo quantum measurements?”Phys. Rev. D 22, 879 (1980).

    Google Scholar 

  19. A. Peres, “Stability of quantum motion in chaotic and regular systems,”Phys. Rev. A 30, 1610 (1984).

    Google Scholar 

  20. V. I. Arnold and A. Avez,Ergodic Problems in Classical Mechanics (Benjamin, New York, 1968).

    Google Scholar 

  21. J. M. Blatt, “An alternative approach to the ergodic problem,”Prog. Theor. Phys. 22, 745 (1959).

    Google Scholar 

  22. E. L. Hahn, “Spin echoes,”Phys. Rev. 80, 580 (1950).

    Google Scholar 

  23. J. Rothstein, “Nuclear spin echo experiments and the foundations of statistical mechanics,”Am. J. Phys. 25, 510 (1957).

    Google Scholar 

  24. M. Kac,Probability and Related Topics in Physical Sciences (Interscience, New York, 1959).

    Google Scholar 

  25. M. Dresden, “The Kac ring model (Mark I),” inStudies in Statistical Mechanics, J. De Boer and G. E. Uhlenbeck, eds. (North-Holland, Amsterdam, 1962), Vol. I, p. 316.

    Google Scholar 

  26. L. E. Reichl,A Modern Course in Statistical Physics (University of Texas Press, Austin, Texas, 1980).

    Google Scholar 

  27. L. Mandel, “Squeezed states and sub-Poissonian photon statistics,”Phys. Rev. Lett. 49, 136 (1982).

    Google Scholar 

  28. L. Szilard, “Über die Entropieverminderung in einen Thermodynamischen System bei Eingriffen intelligenter Wesen,”Z. Phys. 53, 840 (1929).

    Google Scholar 

  29. A. Peres, “The physicist's role in physical laws,”Found. Phys. 10, 631 (1980).

    Google Scholar 

  30. I. R. Senitzky, “Classical statistics inherent in pure quantum states,”Phys. Rev. Lett. 47, 1503 (1981).

    Google Scholar 

  31. S. J. Feingold and A. Peres, “Linear stability test for Hamiltonian systems,”Phys. Rev. A 26, 2368 (1982).

    Google Scholar 

  32. M. V. Berry, N. L. Balazs, M. Tabor, and A. Voros, “Quantum maps,”Ann. Phys. (N.Y.) 122, 26 (1979).

    Google Scholar 

  33. B. O. Koopman, “Hamiltonian systems and transformations in Hilbert spaces,”Proc. Natl. Acad. Sci. USA 17, 315 (1931).

    Google Scholar 

  34. A. Isihara,Statistical Physics (Academic Press, New York, 1971), p. 196.

    Google Scholar 

  35. P. Résibois and M. De Leener,Classical Kinetic Theory of Fluids (Wiley, New York, 1977), p. 205.

    Google Scholar 

  36. M. Reed and B. Simon,Methods of Modern Mathematical Physics (Academic Press, New York, 1972), Vol. I, p. 256;ibid., 1975, Vol. II, p. 315.

    Google Scholar 

  37. E. Wigner, “Quantum correction for thermodynamic equilibrium,”Phys. Rev. 40, 749 (1932).

    Google Scholar 

  38. M. Hillery, R. F. O'Connell, M. O. Scully, and E. P. Wigner, “Distribution functions in physics: Fundamentals,”Phys. Rep. 106, 121 (1984).

    Google Scholar 

  39. H. J. Korsch and M. V. Berry, “Evolution of Wigner's phase-space density under a non-integrable quantum map,”Physica D 3, 627 (1981).

    Google Scholar 

  40. A. M. Ozorio de Almeida and J. H. Hannay, “Geometry of two-dimensional tori in phase space: Projections, sections and the Wigner function,”Ann. Phys. (N.Y.) 138, 115 (1982).

    Google Scholar 

  41. A. M. Ozorio de Almedia, “The Wigner function for two dimensional tori: Uniform approximation and projections,”Ann. Phys. (N.Y.) 145, 100 (1983).

    Google Scholar 

  42. R. C. Brown and R. E. Wyatt, “Quantum mechanical manifestation of Cantori: Wavepacket localization in stochastic regions,”Phys. Rev. Lett. 57, 1 (1986).

    Google Scholar 

  43. S. Fishman, D. R. Grempel, and R. E. Prange, “Chaos, quantum recurrences, and Anderson localization,”Phys. Rev. Lett. 49, 509 (1982).

    Google Scholar 

  44. T. Hogg and B. A. Huberman, “Quantum dynamics and nonintegrability,”Phys. Rev. A 28, 22 (1983).

    Google Scholar 

  45. G. Casati, B. V. Chirikov, I. Guarneri, and D. L. Shepelyansky, “Dynamical stability of quantum chaotic motion in a hydrogen atom,”Phys. Rev. Lett. 56, 2437 (1986).

    Google Scholar 

  46. T. Hogg and B. A. Huberman, “Recurrence phenomena in quantum dynamics,”Phys. Rev. Lett. 48, 711 (1982).

    Google Scholar 

  47. I. C. Percival, “Almost periodicity and the quantalH theorem,”J. Math. Phys. 2, 235 (1961).

    Google Scholar 

  48. L. S. Schulman, “Note on the quantum recurrence theorem,”Phys. Rev. A 18, 2379 (1978).

    Google Scholar 

  49. A. Peres, “Recurrence phenomena in quantum dynamics,”Phys. Rev. Lett. 49, 1118 (1982).

    Google Scholar 

  50. J. Ford, “Chaos: Solving the unsolvable, predicting the unpredictable!” inChaotic Dynamics and Fractals, M. F. Barnsley and S. G. Demko, eds. (Academic Press, New York, 1986), pp. 1–52.

    Google Scholar 

  51. W. Lamb, “Quantum chaos and the theory of measurement,” inChaotic Behavior in Quantum Systems, G. Casati, ed. (Plenum Press, New York, 1985), pp. 353–361.

    Google Scholar 

  52. W. Lamb, “An operational interpretation of nonrelativistic quantum mechanics,”Phys. Today 22, 23 (April 1969).

    Google Scholar 

  53. E. P. Wigner, “The problem of measurement,”Am. J. Phys. 31, 6 (1963).

    Google Scholar 

  54. B. O. Hultgren III and A. Shimony, “The lattice of verifiable propositions of the spin-1 system,”J. Math. Phys. 18, 381 (1977).

    Google Scholar 

  55. A. R. Swift and R. Wright, “Generalizd Stern-Gerlach experiments and the observability of arbitrary spin operators,”J. Math. Phys. 21, 77 (1980).

    Google Scholar 

  56. M. Davis, “What is a computation?” inMathematics Today: Twelve Informal Essays, L. A. Stern, ed. (Springer-Verlag, New York, 1978), pp. 241–267. [Published in soft cover by Vintage Books, New York, 1980).]

    Google Scholar 

  57. A. M. Turing, “On computable numbers, with an application to the Entschneidungsproblem,”Proc. London Math. Soc. 42, 230 (1936).

    Google Scholar 

  58. J. E. Hopcroft, “Turing machines,”Sci. Am. 250, 86 (May 1984).

    Google Scholar 

  59. C. H. Bennett, “The thermodynamics of computation—a review,”Int. J. Theor. Phys. 21, 905 (1982).

    Google Scholar 

  60. H. J. Bremermann, “Minimum energy requirements of information transfer and computing,”Int. J. Theor. Phys. 21, 203 (1982).

    Google Scholar 

  61. D. W. Hillis, “New computer architectures and their relation to physics, or why computer science is no good,”Int. J. Theor. Phys. 21, 255 (1982).

    Google Scholar 

  62. L. B. Levitin, “Physical limitations of rate, depth and minimum energy in information processing,”Int. J. Theor. Phys. 21, 299 (1982).

    Google Scholar 

  63. T. Toffoli, “Physics and computation,”Int. J. Theory. Phys. 21, 165 (1982).

    Google Scholar 

  64. J. D. Bekenstein, “Entropy content and information flow in systems with limited energy,”Phys. Rev. D 30, 1669 (1984).

    Google Scholar 

  65. C. H. Bennett and R. Landauer, “The fundamental physical limits of computation,”Sci. Am. 253, 48 (July 1985).

    Google Scholar 

  66. R. Landauer, “Fundamental physical limitations of the computational process,”Ann. N.Y. Acad. Sci. 426, 161 (1985).

    Google Scholar 

  67. G. Chaitin, “Randomness and mathematical proof,”Sci. Am. 232, 47 (May 1975).

    Google Scholar 

  68. G. Chaitin, “Algorithmic information theory,”IBM J. Res. Dev. 21, 350 (1977).

    Google Scholar 

  69. J. Ford, “How random is a coin toss?”Phys. Today 36, 40 (April 1983).

    Google Scholar 

  70. G. Y. Vichniac, “Cellular automata models of disorder and organisation,” inDisordered Systems and Biological Organization, E. Bienenstock, F. Fogelman Soulié, and G. Weisbuch, eds. (Springer-Verlag, Berlin, 1986), pp. 3–20.

    Google Scholar 

  71. C. H. Bennett, “Dissipation, information, computational complexity and the definition of organization,”Emerging Syntheses in Science, D. Pines, ed. (Santa Fe Institute, Santa Fe, 1985), pp. 297–313.

    Google Scholar 

  72. J. Ford and G. H. Lunsford, “Stochastic behavior of resonant nearly linear oscillator systems in the limit of zero nonlinear coupling,”Phys. Rev. A 1, 59 (1970).

    Google Scholar 

  73. C. H. Woo, “Chaos, ineffectiveness, and the contrast between classical and quantal physics,” preprint, 1987.

  74. M. Feingold, N. Moiseyev, and A. Peres, “Ergodicity and mixing in quantum theory,”Phys. Rev. A 30, 509 (1984).

    Google Scholar 

  75. B. Eckhardt and C. Jung, “Regular and irregular potential scattering,”J. Phys. A 19, L829 (1986).

  76. N. Pomphrey, “Numerical identification of regular and irregular spectra,”J. Phys. B 7, 1909 (1974).

    Google Scholar 

  77. A. Peres, “Perturbation theory for chaotic quantum systems,”Bull. Am. Phys. Soc. 31, 47 (1986).

    Google Scholar 

  78. M. Feingold and A. Peres, “Distribution of matrix elements of chaotic systems,”Phys. Rev. A 34, 591 (1986).

    Google Scholar 

  79. M. Wilkinson, “A semiclassical sum rule for matrix elements of classically chaotic systems,”J. Phys. A 20, 2415 (1987).

    Google Scholar 

  80. C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator,”Rev. Mod. Phys. 52, 341 (1980).

    Google Scholar 

  81. A. J. Leggett, “Macroscopic quantum systems and the quantum theory of measurement,”Suppl. Prog. Theor. Phys. 69, 80 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peres, A. Schrödinger's immortal cat. Found Phys 18, 57–76 (1988). https://doi.org/10.1007/BF01882873

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01882873

Keywords

Navigation