Skip to main content
Log in

The problems in quantum foundations in the light of gauge theories

  • Part III. Invited Papers Dedicated To John Archibald Wheeler
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We review the issues of nonseparability and seemingly acausal propagation of information in EPR, as displayed by experiments and the failure of Bell's inequalities. We show that global effects are in the very nature of the geometric structure of modern physical theories, occurring even at the classical level. The Aharonov-Bohm effect, magnetic monopoles, instantons, etc. result from the topology and homotopy features of the fiber bundle manifolds of gauge theories. The conservation of probabilities, a supposedly highly quantum effect, is also achieved through global geometry equations. The EPR observables all fit in such geometries, and space-time is a truncated representation and is not the correct arena for their understanding. Relativistic quantum field theory represents the global action of the measurement operators as the zero-momentum (and therefore spatially infinitely spread) limit of their wave functions (form factors). We also analyze the collapse of the state vector as a case of spontaneous symmetry breakdown in the apparatus-observed state interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Wheeler and W. H. Zurek,Quantum Theory of Measurement (Princeton University Press, Princeton, New Jersey, 1983).

    Google Scholar 

  2. J. A. Wheeler, “Delayed-Choice Experiments and the Bohr-Einstein Dialog” (American Philosophical Society Publication, 1981).

  3. A. Einstein, B. Podolsky, and N. Rosen,Phys. Rev. 47, 777 (1935).

    Google Scholar 

  4. M. Schwarz,Phys. Rev. Lett. 6, 556 (1961); B. d'Espagnat,Nuovo Cimento 20, 1217 (1961); R. Armenteroset al., Proceedings, 1962 International Conference on High-Energy Physics (CERN), J. Prentki, ed. (CERN Publication, Geneva, 1962); D. Bohm and Y. Aharonov,Phys. Rev. 108, 1070 (1957).

    Google Scholar 

  5. J. S. Bell,Rev. Mod. Phys. 38, 447 (1966);Physics 1, 195 (1964).

    Google Scholar 

  6. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,Phys. Rev. Lett. 23, 880 (1969).

    Google Scholar 

  7. J. F. Clauser and A. Shimony,Rep. Prog. Phys. 41, 1881 (1978); A. Aspect, P. Grangier, and G. Roger,Phys. Rev. Lett. 49, 91 (1982).

    Article  Google Scholar 

  8. A. Aspect, J. Dalibard, and G. Roger,Phys. Rev. Lett. 49, 1804 (1982).

    Google Scholar 

  9. H. Everett III,Rev. Mod. Phys. 29, 454 (1957); J. A. Wheeler,Rev. Mod. Phys. 29, 463 (1957); N. Graham, Ph.D. Thesis, University of North Carolina at Chapel Hill, 1970; B. S. DeWitt,Phys. Today 23, 30 (1970).

    Google Scholar 

  10. D. Bohm,Phys. Rev. 85, 166, 180 (1952); D. Bohm and B. Hiley,Found. Phys. 14, 270 (1984); L. de Broglie,Tentative d'Interpretation Causale et Nonlineaire de la Mechanique Ondulatoire (Gauthier-Villars, Paris, 1956); J. S. Bell,Found. Phys. 12, 989 (1982).

    Google Scholar 

  11. B. d'Espagnat,Sci. Am. 241/5, 158 (1979).

    Google Scholar 

  12. B. d'Espagnat,Conceptual Foundations of Quantum Mechanics (W. A. Benjamin, Menlo Park, California, 1971), Chap. III, Sects. 7 and 9.

    Google Scholar 

  13. H. Weyl,Z. Phys. 56, 330 (1929).

    Google Scholar 

  14. C. N. Yang and R. Mills,Phys. Rev. 95, 631 (1954);96, 191 (1954).

    Google Scholar 

  15. E. Lubkin,Ann. Phys. (N.Y.) 23, 233 (1963);J. Math. Phys. 5, 1603 (1964); A. Trautman,Rep. Math. Phys. 1, 29 (1970); H. G. Loos,Phys. Rev. D 10, 4032 (1974); T. T. Wu and C. N. Yang,Phys. Rev. D 12, 3845 (1975).

    Google Scholar 

  16. W. Drechsler and M. E. Mayer,Differential Geometry and Gauge Theories, Springer-Verlag Lecture Notes in Physics,Vol. 67 (Springer-Verlag, New York, 1977); S. Sternberg,Lectures on Differential Geometry (Prentice-Hall, Englewood Cliffs, New Jersey, 1964); Y. Ne'eman,Symétries Jauges et Variétés de Groupe (University of Montréal Press, Montréal, 1979).

    Google Scholar 

  17. Y. Ne'eman,Proc. Natl. Acad. Sci. U.S.A. 80, 7051 (1983).

    Google Scholar 

  18. J. Thierry-Mieg,J. Math. Phys. 21, 2834 (1980);Nuovo Cimento A 56, 396 (1980); Y. Ne'eman and J. Thierry-Mieg,Proc. Natl. Acad. Sci. U.S.A. 77, 720 (1980);Nuovo Cimento A 71, 104 (1982); L. Beaulieu and J. Thierry-Mieg,Nucl. Phys. B 197, 477 (1982).

    Google Scholar 

  19. G. Curci and R. Ferrari,Nuovo Cimento A,35, 1, 273 (1978).

    Google Scholar 

  20. Y. Aharonov and D. Bohm,Phys. Rev. 115, 485 (1959);123, 1511 (1961);125, 2192 (1962);130, 1625 (1963); W. Ehrenberg and R. E. Siday,Proc. Phys. Soc. London B 62, 8 (1949).

    Google Scholar 

  21. R. G. Chambers,Phys. Rev. Lett. 5, 3 (1960).

    Google Scholar 

  22. G. Morandi and E. Menossi,Eur. J. Phys. 5, 49 (1984).

    Google Scholar 

  23. R. P. Feynman,Rev. Mod. Phys. 29, 337 (1948); R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

    Google Scholar 

  24. C. Morette-DeWitt, A. Maheshwari, and B. Nerlin,Phys. Rep. 50, 255 (1979); M. S. Marinov,Phys. Rep. 60, 1 (1980).

    Google Scholar 

  25. C. N. Yang,Phys. Rev. Lett. 33, 455 (1974).

    Google Scholar 

  26. L. H. Ford and A. Vilenkin,J. Phys. A: Math. Gen. 14, 2353 (1981).

    Google Scholar 

  27. Y. Ne'eman and T. Regge,Phys. Lett. B 74, 54 (1978);Riv. Nuovo Cimento 1, #5 (series 3), 1 (1978); Y. Ne'eman, E. Takasugi, and J. Thierry-Mieg,Phys. Rev. D 22, 2371 (1980).

    Google Scholar 

  28. J. Thierry-Mieg and Y. Ne'eman,Ann. Phys. (N.Y.) 123, 247 (1979).

    Google Scholar 

  29. G. 't Hooft,Nucl. Phys. B 79, 276 (1974); A. Polyakov,JETP Lett. 20, 194 (1974); J. Arafune, P. G. D. Freund, and C. J. Goebel,J. Math. Phys. 16, 433 (1975).

    Article  Google Scholar 

  30. Y. Ne'eman,Phys. Lett. B 81, 190 (1979); D. B. Fairlie,Phys. Lett. B 82, 97 (1979); Y. Ne'eman and J. Thierry-Mieg, inDifferential Geometric Methods in Mathematical Physics, P. L. Garcia, A. Perez-Rendon, and J. M. Souriau, eds., Springer-Verlag Lecture Notes in Math., Vol. 836 (Springer-Verlag, New York, 1980), pp. 318–348;Proc. Natl. Acad. Sci. U.S.A. 79, 7068 (1982).

    Google Scholar 

  31. A. Polyakov,Phys. Lett. B 59, 82 (1975); A. Belavin, A. Polyakov, A. Schwartz, and Y. Tyupkin,Phys. Lett. B 59, 85 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported in part by U.S. DOE Grant DE-FG05-85ER40200.

Wolfson Chair Extraordinary in Theoretical Physics, TAUP N-161-85.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ne'eman, Y. The problems in quantum foundations in the light of gauge theories. Found Phys 16, 361–377 (1986). https://doi.org/10.1007/BF01882693

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01882693

Keywords

Navigation