Skip to main content
Log in

New targets for pyrimidine antimetabolites in the treatment of solid tumours

1: Thymidylate synthase

  • Published:
Pharmacy World and Science Aims and scope Submit manuscript

Abstract

Thymidylate synthase forms the target for anticancer therapy with fluoropyrimidines. Anticancer activity can be increased by the use of different modulators of fluoropyrimidine metabolism, which lead to an enhanced inhibition of thymidylate synthase.In vitro andin vivo studies with fluoropyrimidines and two of these modulators, folinic acid (leucovorin) and interferon, are summarized. The promise of these preclinical results is reflected by the response data of several clinical trials. The biochemical effects of these modulators are described and illustrated by the fluoropyrimidine-mediated inhibition of thymidylate synthase in tumour samples, which is clearly enhanced by folinic acid. The regulation of thymidylate synthase synthesis may also be crucial for total blockade of thymidylate synthase activity. This regulation may be influenced by interferon-γ. Although the addition of modulators increases the activity of fluoropyrimidines at the level of thymidylate synthase, most solid tumours, especially colorectal carcinomas, are resistant to these combinations. For this reason, new, more potent inhibitors of thymidylate synthase have been developed, the antifolates. Preclinical data show that some of these compounds have good antitumour activity, but they still have to prove their value in the clinic. These two approaches, the use of modulators and new compounds, have shown activity preclinically and the extension of these findings to clinical studies stresses the importance of thymidylate synthase as a target in fluoropyrimidine therapy of solid tumours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Danenberg PV. Thymidylate synthetase. A target enzyme in cancer chemotherapy. Biochim Biophys Acta 1977;473:73–92.

    PubMed  Google Scholar 

  2. Canman CE, Lawrence TS, Shewach DS, Tang HY, Maybaum J. Resistance to 5-fluorodeoxyuridine (FdUrd)-induced DNA damage and cytotoxicity correlates with elevation of dUTPase activity and failure to accumulate dUTP. Proc Am Assoc Cancer Res 1993;34:418.

    Google Scholar 

  3. Radparvar S, Houghton PJ, Houghton JA. Characteristics of thymidylate synthase purified form a human colon adeno-carcinoma. Arch Biochem Biophys 1988;260:342–50.

    PubMed  Google Scholar 

  4. Bardot V, Luccioni C, Lefrançois D, Muleris M, Dutrillaux B. Activity of thymidylate synthetase, thymidine kinase and galactokinase in primary and xenografted human colorectal cancer in relation to their chromosomal patterns. Int J Cancer 1991;47:607–14.

    Google Scholar 

  5. Takeishi K. Molecular cloning and molecular biological studies of human thymidylate synthase gene. Yakugaku Zasshi 1990;110:891–907.

    PubMed  Google Scholar 

  6. Ash J, Ke Y, Korb M, Johnson LF. Introns are essential for growth-regulated expression of the mouse thymidylate synthase gene. Mol Cell Biol 1993;13:1565–71.

    PubMed  Google Scholar 

  7. Santi DV, McHenry CS, Sommer H. Mechanism of interaction of thymidylate synthetase with 5-fluorodeoxyuridylate. Biochemistry 1974;13:471–80.

    PubMed  Google Scholar 

  8. Stover P, Schirch V. Serine hydroxymethyltransferase catalyzes the hydrolysis of 5, 10-methenyltetrahydrofolate to 5-formyltetrahydrofolate. J Biol Chem 1990;265:14227–33.

    PubMed  Google Scholar 

  9. Perry M. The chemotherapy source book. Baltimore: Williams & Wilkins, 1992.

    Google Scholar 

  10. Pinedo HM, Peters GJ. Fluorouracil: biochemistry and pharmacology. J Clin Oncol 1988;6:1653–64.

    PubMed  Google Scholar 

  11. Grem JL. Fluorinated pyrimidines. In: Chabner BA, Collins JM, editors. Cancer chemotherapy: principles and practise. Philadelphia: Lippincott Company, 1990;180–224.

    Google Scholar 

  12. Weckbecker G. Biochemical pharmacology and analysis of fluoropyrimidines alone and in combination with modulators. Pharmacol Ther 1991;50:367–424.

    PubMed  Google Scholar 

  13. Peters GJ, Pinedo HM, Ferwerda W, de Graaf TW, van Dijk W. Do antimetabolites interfere with the glycosylation of cellular glycoconjugates. Eur J Cancer 1990;26:516–23.

    PubMed  Google Scholar 

  14. De Graaf TW, Slot SS, Peters GJ, van Dijk W. Changes in the glycosylation of L1210 cells after exposure to various anti-metabolites. Eur J Cancer 1993;29a:1760–5.

    PubMed  Google Scholar 

  15. De Bruijn EA, van Oosterom AT, Tjaden UR. Site specific delivery of 5-fluorouracil with 5′-deoxy-5-fluorouridine. Reg Cancer Treat 1989;2:61–76.

    Google Scholar 

  16. Peters GJ, Braakhuis BJM, de Bruijn EA, Laurensse EJ, van Walsum M, Pinedo HM. Enhanced therapeutic efficacy of 5′-deoxy-5-fluorouridine in 5-fluorouracil resistant head and neck tumours in relation to 5-fluorouracil metabolising enzymes. Br J Cancer 1989;59:327–34.

    PubMed  Google Scholar 

  17. Rustum YM. Modulation of fluoropyrimidines by leucovorin: rationale and status. J Surg Oncol 1991;Suppl 2:116–23.

    Google Scholar 

  18. Van Laar JAM, Durrani FA, Rustum YM. Antitumor activity of the weekly push schedule of 5-fluoro-2′-deoxyuridine ±N-phosphonacetyl-L-aspartate in mice bearing advanced colon carcinoma 26. Cancer Res 1993;53:1560–4.

    PubMed  Google Scholar 

  19. Kemeny N, Daly J, Reichamn B, Geller N, Botet J, Oderman P. Interhepatic artery or systemic infusion of fluorodeoxy-uridine in patients with metastases from colorectal carcinoma. Ann Intern Med 1987;107:459–65.

    PubMed  Google Scholar 

  20. Patt YZ. Regional hepatic arterial chemotherapy for colorectal cancer metastatic to the liver: the controversy continues. J Clin Oncol 1993;11:815–9.

    PubMed  Google Scholar 

  21. Andersen E, Pedersen H. Oral ftorafur versus intravenous 5-fluorouracil. Acta Oncol 1987;26:433–6.

    PubMed  Google Scholar 

  22. Peters GJ, van Groeningen CJ. Clinical relevance of biochemical modulation of 5-fluorouracil. Ann Oncol 1991;2:469–80.

    PubMed  Google Scholar 

  23. Van der Wilt CL, Pinedo HM, de Jong M, Peters GJ. Effect of folate diastereoisomers on the binding of 5-fluoro-2′-deoxyuridine-5′-monophosphate to thymidylate synthase. Biochem Pharmacol 1993;45:1177–9.

    PubMed  Google Scholar 

  24. Keyomarsi K, Moran RG. Folinic acid augmentation of the effects of fluoropyrimidines on murine and human leukemic cells. Cancer Res 1986;46:5229–35.

    PubMed  Google Scholar 

  25. Mini E, Moroson BA, Bertino JR. Cytotoxicity of floxuridine and fluorouracil in human T-lymphoblastic leukemia cells: enhancement by leucovorin. Cancer Treat Rev 1987;71:381–9.

    Google Scholar 

  26. Zittoun J, Marquet J, Pilorget JJ, Tonetti C, De Gialluly E. Comparative effect of6S, 6R and6RS leucovorin on methotrexate rescue and on modulation of 5-fluorouracil. Br J Cancer 1991;63:885–8.

    PubMed  Google Scholar 

  27. Waxman S, Bruckner H. The enhancement of 5-fluorouracil antimetabolic activity by leucovorin, menadione andα- tocopherol. Eur J Cancer Clin Oncol 1982;18:685–92.

    PubMed  Google Scholar 

  28. Takemura Y, Ohnuma T, Miyachi H, Sekiguchi S. A human leukemia cell line made resistant to two folate analogues trimetrexate andN 10-propargyl-5,8-dideazafolic acid (CB3717). J Cancer Res Clin Oncol 1991;117:519–25.

    PubMed  Google Scholar 

  29. Evans RM, Laskin JD, Hakala MT. Effect of excess folates and deoxyinosine on the activity and site of action of 5-fluorouracil. Cancer Res 1981;41:3283–95.

    Google Scholar 

  30. Milano G, Etienne MC, Fischel JL, Formento P, François E, Gaspard MH, et al. Comparison of pharmacological activities of reduced folate profiles of oral and i.v. folinic acid administration. Proc Am Assoc Cancer Res 1992;33:427.

    Google Scholar 

  31. Etienne MC, Bernard S, Fischel JL, Formamento O, Gioanni J, Santini J, et al. Dose reduction without loss of efficacy for 5-fluorouracil and cisplatin combined with folinic acid.In vitro study on human head and neck carcinoma cell lines. Br J Cancer 1991;63:372–7.

    PubMed  Google Scholar 

  32. Kane MA, Roth E, Raptis G, Schreiber C, Waxman S. Effect of intracellular folate concentration on the modulation of 5-fluorouracil cytotoxicity by the elevation of phophoribosyl-pyrophosphate in cultured KB cells. Cancer Res 1987;47:6444–50.

    PubMed  Google Scholar 

  33. Van der Wilt CL, de Jong M, Braakhuis BJM, Pinedo HM, Peters GJ. The interval between methotrexate and leucovorin determines the efficacy of 5-fluorouracil modulationin vitro andin vivo. In: Ayling JE, Nair MG, Baugh CM, editors. Chemistry and biology of pteridines and folates. New York: Plenum Press. In press.

  34. Chang Y-M, Bertino JR. Enhancement of fluoropyrimidine inhibition of cell growth by leucovorin and deoxynucleosides in a human squamous cell carcinoma cell line. Cancer Invest 1989;7:557–63.

    PubMed  Google Scholar 

  35. Park J-G, Collins JM, Gazdar AF, Allegra CJ, Steinberg SM, Greene RF, et al. Enhancement of fluorinated pyrimidine-induced cytotoxicity by leucovorin in human colorectal carcinoma cell lines. J Natl Cancer Inst 1988;80:1560–4.

    PubMed  Google Scholar 

  36. Kase S, Kubota T, Watanabe M, Takeuchi T, Tanino H, Furukawa T, et al. Increased antitumor activity of 5-fluoro-uracil withl-leucovorin and interferons on human colon carcinoma cell lines. Proc Am Assoc Cancer Res 1992;33:420.

    Google Scholar 

  37. Mizunuma N, Aiba K, Sjibata H, Ogawa M, Kuraish Y, Yoshida K. Dual modulation withd,l-leucovorin and interferon-γ enhances cytotoxicity of 5-fluorouracil in human colon cancer cell lines. Proc Am Assoc Cancer Res 1992;33:426.

    Google Scholar 

  38. Moran RG, Scanlon KL. Schedule-dependent enhancement of the cytotoxicity of fluoropyrimidines to human carcinoma cells in the presence of folinic acid. Cancer Res 1991;51:4618–23.

    PubMed  Google Scholar 

  39. Sugimoto Y, Ohe Y, Nishio K, Ohmori T, Fujiwara Y, Saijo N.In vitro enhancement of fluoropyrimidine-induced cytotoxicity by leucovorin in colorectal and gastric carcinoma cell lines but not in non-small-cell lung carcinoma cell lines. Cancer Chemother Pharmacol 1992;30:417–22.

    PubMed  Google Scholar 

  40. Van der Wilt CL, Pinedo HM, Smid K, Cloos J, Noordhuis P, Peters GJ. Effect of folinic acid on 5-fluorouracil activity and expression of thymidylate synthase. Semin Oncol 1992;19 Suppl 2:16–25.

    Google Scholar 

  41. Timmer-Bosscha H, Sinnige HAM, Verschueren RJC, Meersma GJ, Mulder NH. Thymidylate synthase levels/activityin vitro andin vivo and modulation of 5-fluorouracil sensitivity. Proc Am Assoc Cancer Res 1993;34:414.

    Google Scholar 

  42. Chowhan N, Hagag N, Madajewicz S, Hentschei P, Brady V. Biochemical modulation of chemotherapy in patients with colon carcinoma. Proc Am Assoc Cancer Res 1992;33:217.

    Google Scholar 

  43. Houghton JA, Adkins DA, Rahman A, Houghton PJ. Interaction between 5-fluorouracil, [6RS]leucovorin, and recombinant human interferon-α 2a in cultured colon adenocarcinoma cells. Cancer Commun 1991;3:225–31.

    PubMed  Google Scholar 

  44. Park J-G, Kramer B, Lai S-L, Goldstein LJ, Gazdar AF. Chemosensitivity patterns and expression of human multidrug resistance-associated MDR1 gene by human gastric and colorectal carcinoma cell lines. J Natl Cancer Inst 1990;82:193–8.

    PubMed  Google Scholar 

  45. Erlichman C, Wu A. Effects of 5-fluorouracil and leucovorin in spheroids: a model for solid tumours. Anticancer Res 1991;11:671–6.

    PubMed  Google Scholar 

  46. Tsai C-M, Hsiao S-H, Frey C, Chang K-T, Perng R-P, Gazdar AF, et al. Combination cytotoxic effects ofcis-diammine-dichloroplatinum(II) and 5-fluorouracil with and without leucovorin against human non-small cell lung cancer cell lines. Cancer Res 1993;53:1079–84.

    PubMed  Google Scholar 

  47. Mandelbaum-Shavit F. Folinic acid enhanced cytotoxicity of fluoropyrimidines in human breast cancer cells. Pteridines 1993;4:51–5.

    Google Scholar 

  48. Ullman B, Lee M, Martin DW, Santi DV. Cytotoxicity of 5-fluoro-2′-deoxyuridine; required for reduced cofactors and antagonism by methotrexate. Proc Natl Acad Sci USA 1978;75:980–3.

    PubMed  Google Scholar 

  49. Lawrence TS, Heimburger DK, Shewach DS. The effects of leucovorin and dipyridamole on fluoropyrimidine-induced radiosensitization. Int J Radiat Oncol Biol Phys 1990;20:377–81.

    Google Scholar 

  50. Zhang ZG, Rustum YM. Effects of diastereoisomers of 5-formyltetrahydrofolate on cellular growth sensitivity to 5-fluoro-2′-deoxyuridine, and methylenetetrahydrofolate polyglutamate levels in HCT-8 cells. Cancer Res 1991;51:3476–81.

    PubMed  Google Scholar 

  51. Jansen G, Westerhof GR, Jarmuszewski MJA, Kathman I, Rijksen G, Schornagel JH. Methotrexate transport in variant human CCRF-CEM leukemia cells with elevated levels of the reduced folate carrier. J Biol Chem 1990;30:18272–7.

    Google Scholar 

  52. Wolhueter RM, McIvor RS, Plagemann PGW. Facilitated transport of uracil and 5-fluorouracil and permeation of orotic acid into cultured mammalian cells. J Cell Physiol 1980;104:309–19.

    PubMed  Google Scholar 

  53. Zittoun J. Pharmacokinetics andin vitro studies ofl-leucovorin. Comparison with thed andd,l-leucovorin. Ann Oncol 1993;4:S1–5.

    Google Scholar 

  54. Klubes P, Cerna I, Meldon M. Effect of concurrent calcium leucovorin infusion on 5-fluorouracil cytotoxicity against murine L1210 leukemia. Cancer Chemother Pharmacol 1981;6:121–5.

    PubMed  Google Scholar 

  55. Martin DS, Stolfi RL, Colofiore JR. Failure of high-dose leucovorin to improve the therapeutic index of maximally tolerated dose of 5-fluorouracil: a murine study with clinical relevance? J Natl Cancer Inst 1988;80:496–500.

    PubMed  Google Scholar 

  56. Nord LD, Stolfi RL, Martin DS. Biochemical modulation of 5-fluorouracil with leucovorin or delayed uridine rescue. Biochem Pharmacol 1992;12:2543–9.

    Google Scholar 

  57. Wright JE, Dreyfuss A, El-Magharbel I, Trites D, Jones S, Holden SA, et al. Selective expansion of 5,10-methylene-tetrahydrofolate pools and modulation of 5-fluorouracil antitumor activity by leucovorinin vivo. Cancer Res 1989;49:2592–6.

    PubMed  Google Scholar 

  58. Rustum YM. Selective modulation of 5-fluorouracil action in patients with colorectal carcinoma. Chemioterapia 1982;4:377–382.

    Google Scholar 

  59. Nadal JC, van Groeningen CJ, Pinedo HM, Peters GJ.In vivo potentiation of 5-fluorouracil by leucovorin in murine colon carcinoma. Biomed Pharmacother 1988;42:387–93.

    PubMed  Google Scholar 

  60. Nadal J, van Groeningen CJ, Pinedo HM, Peters GJ. Schedule-dependency ofin vivo modulation of 5-fluorouracil by leucovorin and uridine in murine colon carcinoma. Invest New Drugs 1989;7:163–72.

    PubMed  Google Scholar 

  61. Van der Wilt CL, Pinedo HM, Smid K, Peters GJ. Elevation of thymidylate synthase following 5-fluorouracil treatment is prevented by the addition of leucovorin in murine colon tumors. Cancer Res 1992;52:4922–9.

    PubMed  Google Scholar 

  62. Codacci-Pisanelli G, van der Wilt CL, Noordhuis P, Kok R, Franchi F, Pinedo HM, et al. Pharmacodynamics and antitumour activity of continuous infusion of 5-fluorouracil in mice. Proc Am Assoc Cancer Res 1992;33:533.

    Google Scholar 

  63. Iigo M, Nishikata K, Hoshi A.In vivo antitumor effects of fluoropyrimidines on colon adenocarcinoma 38 and enhancement by leucovorin. Jpn J Cancer Res 1992;83:392–6.

    PubMed  Google Scholar 

  64. Kovacs CJ, Dainer PM, Evans MJ, Nyce J. Biochemical modulation of combined radiation and 5-fluorouracil treatment of murine tumors byd,l-leucovorin. Anticancer Res 1991;6:905–10.

    Google Scholar 

  65. Houghton JA, Williams LG, Loftin SK, Cheshire PJ, Morton CL, Houghton PJ, et al. Factors that influence the therapeutic activity of 5-fluorouracil [6RS]leucovorin combinations in colon adenocarcinoma xenografts. Cancer Chemother Pharmacol 1992;30:423–32.

    PubMed  Google Scholar 

  66. Cao S, Duranni F, Rustum YM. Antitumor activity of fluoro-uracil/6-(RS)-leucovorin (FUra/LV) in rats bearing colon carcinoma: role of dose and schedule. Proc Am Assoc Cancer Res 1992;33:422.

    Google Scholar 

  67. Carlsson G, Gustavsson BG, Spears CP, Hafström LO. 5-Fluorouracil plus leucovorin as adjuvant treatment of an experimental liver tumorin rats. Anticancer Res 1990;10:813–6.

    PubMed  Google Scholar 

  68. Wadler S, Schwartz EL. Antineoplastic activity of the combination of interferon and cytotoxic agents against experimental and human malignancies: a review. Cancer Res 1990;50:3473–84.

    PubMed  Google Scholar 

  69. Takahashi I, Oda Y, Lai M, Fukumoto M, Nishimura M, Yorimitsu S, et al. Interaction between human lymphoblastoid interferon and chemotherapeutic agentsin vitro. Acta Med Okayama 1984;38:501–4.

    PubMed  Google Scholar 

  70. Sato M, Yoshida H, Urata M, Yanagawa T, Yura Y, Nitta T, et al. Effects of 5-fluorouracil and the combination of 5-fluorouracil and human leucocyte interferon on human salivary gland adenocarcinoma cell line in culture. Int J Oral Surg 1984;13:35–4479.

    PubMed  Google Scholar 

  71. Miyoshi T, Ogawa S, Kanamori T, Nobuhara M, Namba M. Interferon potentiates cytotoxic effects of 5-fluorouracil on cell proliferation of established human cell lines originating from neoplastic tissues. Cancer Lett 1983;17:239–47.

    PubMed  Google Scholar 

  72. Namba M, Yamamoto S, Tanaka H, Kanmori T, Nobuhara M, Kimoto T.In vitro andin vivo studies on potentiation of cytotoxic effects of anticancer drugs or cobalt 60 gamma ray by interferon on human neoplastic cells. Cancer 1984;54:2262–7.

    PubMed  Google Scholar 

  73. Yamamoto S, Tanaka, H, Kanamori T, Nobuhara M, Namba M.In vitro studies on potentiation of cytotoxic drugs by interferon on a human neoplastic cell line (HeLa). Cancer Lett 1983;20:131–8.

    PubMed  Google Scholar 

  74. Seymour MT, Dobson N, Clemens M, Slevin ML. 5-Fluorouracil/interferon-α synergy: is regulation of expression of thymidylate synthase the key? Proc Am Assoc Cancer Res 1992;33:545.

    Google Scholar 

  75. Elias L, Crissman HA. Interferon effects upon the adenocarcinoma 38 and HL-60 cell lines: antiproliferative responses and synergistic interactions with halogenated pyrimidine antimetabolites. Cancer Res 1988;48:4868–73.

    PubMed  Google Scholar 

  76. Elias L, Sandoval JM. Interferon effects upon fluorouracil metabolism by HL-60 cells. Biochem Biophys Res Commun 1989;163:867–74.

    PubMed  Google Scholar 

  77. Arbaje YM, Bittner G, Yingling JM, Storer B, Schiller JH. Antiproliferative effects of interferons-α andβ- in combination with 5-fluorouracil, cisplatin andcis- andtrans- retinoic acid in three human lung carcinoma cell lines. J Interferon Res 1993;13:25–32.

    PubMed  Google Scholar 

  78. Wadler S, Wersto R, Weinberg V, Thompson D, Schwartz EL. Interaction of fluorouracil and interferon in human colon cancer cell lines: cytotoxic and cytokinetic effects. Cancer Res 1990;50:5735–9.

    PubMed  Google Scholar 

  79. Tevaearai HY, Laurent PL, Suardet L, Eliason JF, Givel J-C, Odarchenko N. Interactions of interferon-α 2a with 5′-deoxy-5-fluorouridine in colorectal cancer cellsin vitro. Eur J Cancer 1992;28:368–72.

    PubMed  Google Scholar 

  80. Trujillo JM, Yang L, Gercovich G, Su Y-Z. Heterogenous effects of interferon on antitumor agents' cytotoxicities to human colon carcinoma cell lines. Anticancer Res 1991;11:439–44.

    PubMed  Google Scholar 

  81. Kase S, Kubota T, Watanabe M, Furukawa T, Tanino H, Ishibiki K, et al. Interferon beta increases antitumor activity of 5-fluorouracil against human colon carcinoma cellsin vitro andin vivo. Anti-Cancer Res 1993;13:369–374.

    Google Scholar 

  82. Killion JJ, Fishbeck R, Littleton T, Esgro J, Whitworth P, Fidler IJ, The antiproliferative activity of fluorodeoxyuridine and interferon alpha against cultured human colon carcinoma cells depends upon the sequence of treatment. Proc Am Assoc Cancer Res 1990;31:425.

    Google Scholar 

  83. Eda H, Fujimoto K, Watanabe S, Ishikawa T, Ohiwa T, Tatsuno K, et al. Cytokines induce uridine phosphorylase in mouse colon 26 carcinoma cells and make the cells more susceptible to 5′-deoxy-5-fluorouridine. Jpn J Cancer Res 1993;84:341–7.

    PubMed  Google Scholar 

  84. Le J, Yip YK, Vilček J. Cytolytic activity of interferon-gamma and its synergism with 5-fluorouracil. Int J Cancer 1984;34:495–500.

    PubMed  Google Scholar 

  85. Maas IWHM, Boven E, Pinedo HM, Schlüper HMM, Haisma HJ. The effects ofγ-interferon with 5-fluorouracil and 5-fluoro-2′-deoxyuridine on proliferation and antigen expression in a panel of human colorectal cancer cell lines. Int J Cancer 1991;48:749–56.

    PubMed  Google Scholar 

  86. Eda H, Fujimoto K, Watanabe S, Ura M, Hino A, Tanaka Y,et al. Cytokines induce thymidine phosphorylase expression in tumor cells and make them more susceptible to 5′-deoxy-5-fluorouridine. Cancer Chemother Pharmacol 1993;32:333–8.

    PubMed  Google Scholar 

  87. Chu E, Zinn S, Boarman D, Allegra CJ. Interaction ofγ-interferon and 5-fluorouracil in the H630 human colon carcinoma cell line. Cancer Res 1990;50:5834–40.

    PubMed  Google Scholar 

  88. Gohji K, Maeda S, Sugiyama T, Ishigami J, Kamidono S. Enhanced inhibition of anticancer drugs by human recombinant gamma-interferon for human renal cell carcinoma. J Urol 1987;137:539–43.

    PubMed  Google Scholar 

  89. Neefe JR, John W. Mechanisms of interaction of interferon and 5-fluorouracil in solid tumors. Semin Oncol 1991;5:77–82.

    Google Scholar 

  90. Schwartz EL, Hoffman M, O'Connor CJ, Wadler S. Stimulation of 5-fluorouracil metabolic activation by interferon-α in human colorectal carcinoma cell lines. Biochem Biophys Res Commun 1992;182:1232–9.

    PubMed  Google Scholar 

  91. Houghton JA, Morton CL, Adkins DA, Rahman A. Locus of the interaction among 5-fluorouracil, leucovorin, and interferon-α2a in colon carcinoma cells. Cancer Res 1993; 4243–50.

  92. Chu E, Koeller DM, Johnston PG, Zinn S, Allegra CJ. Regulation of thymidylate synthase in human colon cancer cells treated with 5-fluorouracil and interferon-γ. Mol Pharmacol 1993;43:527–33.

    PubMed  Google Scholar 

  93. Kameyama S, Akaza H, Koseki K, Kanamura M, Munakata A, Niijima T. Combined effects of interferon-α and 5-fluorouracil, orcis-diammine-dichloroplatinum(II) on murine bladder tumorin vivo. J Jpn Soc Cancer Ther 1986;21:1409–12.

    Google Scholar 

  94. Birsic W, D'Oro L, Charoensiri S, Katoh A. The combined effect of interferon and 5-FU on tumor-cell metastasis in the nude mouse. Dis Colon Rectum 1989;32:340–3.

    PubMed  Google Scholar 

  95. Marquet RL, Jeekel J. Combined effect of 5-fluorouracil and interferon on experimental liver metastases of rat colon carcinoma. J Cancer Res Clin Oncol 1985;109:156–8.

    PubMed  Google Scholar 

  96. Morikawa K, Fan D, Denkins YM, Levin B, Gutterman JU, Walker SM, et al. Mechanisms of combined effects ofγ-interferon an 5-fluorouracil on human colon cancer implanted into nude mice. Cancer Res 1989;49:799–805.

    PubMed  Google Scholar 

  97. Morikawa K, Fidler I. Heterogeneous response of human colon cancer cells to the cytostatic and cytotoxic effects of recombinant human cytokines: interferon-α, interferon-γ, tumor necrosis factor and interleukin-1. J Biol Response Modif 1989;8:206–18.

    Google Scholar 

  98. Lee M, Price D, Specht S, Stemmier N, Katoh A. Interferon modulation of 5-fluorouracil: use in neoadjuvant therapy inhibits experimental liver metastases in nude mice. Anti-Cancer Drugs 1992;3:413–8.

    PubMed  Google Scholar 

  99. Stolfi RL, Martin DS, Sawyer RC, Spiegelman S. Modulation of 5-fluorouracil-induced toxicity in mice with interferon or with the interferon inducer, polyinosinic-polycytidylic acid. Cancer Res 1983;43:561–6.

    PubMed  Google Scholar 

  100. Fidler IJ, Fogler WE, Kleinerman ES, Saiki I. Abrogation of species specificity for activation of tumoricidal properties in macrophages by recombinant mouse or human interferon-gamma encapsulated in liposomes. J Immunol 1985;135:4289–96.

    PubMed  Google Scholar 

  101. Rustum YM. Rational basis for the metabolic modulation of 5-fluorouracil by leucovorin and interferon alpha. Br J Haematol 1991;19 Suppl 1:52–5.

    Google Scholar 

  102. Piedbois P, Buyse M, Rustum Y, Machover D, Erlichman C, Carlson RW, et al. Modulation of 5-fluorouracil by leucovorin in patients with advanced colorectal cancer: evidence in terms of response rates. J Clin Oncol 1992;10:896–903.

    PubMed  Google Scholar 

  103. Wadler S, Lembersky B, Atkins M, Kirkwood J, Petrelli N. Phase II trial of fluorouracil and recombinant interferon alpha-2a in patients with advanced colorectal carcinoma: an eastern cooperative oncology group study. J Clin Oncol 1991;9:1806–10.

    PubMed  Google Scholar 

  104. Pazdur R, Ajani JA, Patt YZ, Winn R, Jackson D, Shepard B, et al. Phase II study of fluorouracil and recombinant interferon alpha-2a in previously untreated advanced colorectal carcinoma. J Clin Oncol 1990;8:2027–31.

    PubMed  Google Scholar 

  105. Kemeny N, Younes A, Seiter K, Kelsen D, Sammarco F, Actams L, et al. Interferon alpha-2a and 5-fluorouracil for advanced colorectal carcinoma. Cancer 1990;66:2470–5.

    PubMed  Google Scholar 

  106. Sinnige HAM, Butter J, de Vries EGE, Uges DRA, Roenhorst HW, Verschueren RCJ, et al. Phase I/II study of the addition ofα-2a interferon to 5-fluorouracil/leucovorin. Pharmaco-kinetic interaction ofα-2a interferon and leucovorin. Eur J Cancer 1993;29a:1715–20.

    PubMed  Google Scholar 

  107. Grem JL, Jordan E, Robson ME, Binder RS, Hamilton JM, Steinberg SM, et al. Phase II study of fluorouracil, leucovorin and interferon alpha-2a in metastatic colorectal carcinoma. J Clin Oncol 1993;11:1737–45.

    PubMed  Google Scholar 

  108. Punt CJA, de Mulder PHM, Burghout, JThM, Wagener DJTh. Alpha-interferon in combination with 5-fluorouracil and leucovorin in metastatic colorectal cancer; a phase I study. Cancer Chemother Pharmacol 1992;29:326–8.

    PubMed  Google Scholar 

  109. Labianca R, Pancerra G, Tedeschi L, Dallavalle G, Luporini A, Luporini G. High dose alpha-2b interferon + folinic acid in the modulation of 5-fluorouracil. A phase II study in advanced colorectal cancer with evidence of an unfavourable cost/benefit ratio. Tumori 1992;78:32–4.

    PubMed  Google Scholar 

  110. Seither RL, Rape TJ, Goldman D. Interconversion of tetrahydrofolate cofactors to dihydrofolate induced by trimetrexate after suppression of thymidylate synthase by fluorode-oxyuridine in L1210 leukemia cells. Biochem Pharmacol 1992;43:2647–54.

    PubMed  Google Scholar 

  111. Spears CP, Shahinian AH, Moran RC, Heidelberger C, Corbett TH.In vivo kinetics of thymidylate synthetase inhibition in FUra-sensitive and -resistant murine colon adeno-carcinomas. Cancer Res 1982;42:450–6.

    PubMed  Google Scholar 

  112. Houghton JA, Radparvar S, Torrance PM, Williams L, Houghton PJ. Determination of thymidylate synthase activity in colon tumor tissue after treatment with 5-fluorouracil. Biochem Pharmacol 1987;36:1285–9.

    PubMed  Google Scholar 

  113. Spears CP, Gustavsson BG, Berne M, Frösing R, Bernstein L, Hayes AA. Mechanisms of innate resistance to thymidylate synthase inhibition after 5-fluorouracil. Cancer Res 1988;48:5894–900.

    PubMed  Google Scholar 

  114. Swain SM, Lippmann ME, Egan EF, Steinberg SM, Allegra CJ. Fluorouracil and high-dose leucovorin in previously treated patients with metastatic breast cancer. J Clin Oncol 1989;7:890–9.

    PubMed  Google Scholar 

  115. Peters GJ, van Groeningen CJ, van der Wilt CL, Smid K, Meyer S, Pinedo HM. Effect of leucovorin on 5-fluorouracil-induced inhibition of thymidylate synthase in patients with colon cancer. Adv Exp Med Biol 1991;309a:131–4.

    PubMed  Google Scholar 

  116. Peters GJ, Hoekman K, van Groeningen CJ, van der Wilt CL, Smid K, Meijer S, et al. Potentiation of 5-fluorouracil induced inhibition of thymidylate synthase in human colon tumors by leucovorin is dose dependent. In: Ayling JE, Nair MG, Baugh CM, editors. Chemistry and biology of pteridines and folates. New York: Plenum Press, 1993;613–6.

    Google Scholar 

  117. Navelgund LG, Rossana C, Muench AJ, Johnson LF. Cell cycle regulation of thymidylate synthetase gene expression in cultured mouse fibroblasts. J Biol Chem 1980;255:7386–90.

    PubMed  Google Scholar 

  118. Rode W, Scanlon KJ, Moroson BA, Bertino JR. Regulation of thymidylate synthetase in mouse leukemia cells (L1210). J Biol Chem 1980;255:1305–11.

    PubMed  Google Scholar 

  119. Jenh C-H, Rao LG, Johnson LF. Regulation of thymidylate synthase enzyme in 5-fluorodeoxyuridine-resistant mouse fibroblasts during the transition from the resting to growing state. J Cell Physiol 1985;122:149–54.

    PubMed  Google Scholar 

  120. Ayusawa D, Shimizu K, Koyama H, Kaneda S, Takeishi K, Seno T. Cell-cycle-directed regulation of thymidylate synthase messenger RNA in human diploid fibroblasts stimulated to proliferate. J Mol Biol 1986;190:559–67.

    PubMed  Google Scholar 

  121. Chu E, Koeller DM, Casey JL, Drake JC, Chabner BA, Elwood PC, et al. Autoregulation of human thymidylate synthase messenger RNA translation by thymidylate synthase. Proc Natl Acad Sci USA 1991;88:8977–81.

    PubMed  Google Scholar 

  122. Takimoto CH, Allegra CJ, Grem JL, Chu E.In vitro binding of human dihydrofolate reductase protein to dihydrofolate reductase messenger RNA. Proc Am Assoc Cancer Res 1993;34:275.

    Google Scholar 

  123. Sherley JL, Kelly TJ. Regulation of human thymidine kinase during the cell cycle. J Biol Chem 1988;263:8350–8.

    PubMed  Google Scholar 

  124. Harrap KR, Jackman AL, Newell DR, Taylor GA, Hughes LR, Calvert AH. Thymidylate synthase: a target for anticancer drug design. Adv Enzyme Regul 1989;29:161–79.

    PubMed  Google Scholar 

  125. Jones TE, Calvert AH, Jackman AL, Brown SJ, Jones M, Harrap KR. A potent antitumour quinazoline inhibitor of thymidylate synthetase: synthesis, biological properties and therapeutic results in mice. Eur J Cancer 1981;17:11–9.

    PubMed  Google Scholar 

  126. Calvert AH, Alison DL, Harland SJ, Robinson BA, Jackman AL, Jones TR, et al. A phase I evaluation of the quinazoline antifolate thymidylate synthase inhibitor,N 10-propargyl-5,8-dideazafolic acid, CB3717. J Clin Oncol 1986;4:1245–52.

    PubMed  Google Scholar 

  127. Bassendine MF, Curtin NJ, Loose H, Harris AL, James OFW. Induction of remission in hepatocellular carcinoma with a new thymidylate synthase inhibitor, CB3717. J Hepatol 1987;4:349–56.

    PubMed  Google Scholar 

  128. Calvert AH, Newell DR, Jackman AL, Gumbrell LA, Sikora E, Grzelakowska-Sztabert B, et al. Recent preclinical and clinical studies with the thymidylate synthase inhibitorN 10-propargyl-5,8-dideazafolic acid (CB3717). NCI Monogr 1987;5:213–8.

    PubMed  Google Scholar 

  129. Jackman AL, Taylor GS, O'Connor BM, Bishop JA, Moran RG, Calvert AH. Activity of the thymidylate synthase inhibitor 2-desamino-N 10-propargyl-5,8-dideazafolic acid and related compounds in murine (L1210) and human (W1L2) systemsin vitro andin vivo. Cancer Res 1990;50:5212–8.

    PubMed  Google Scholar 

  130. Clarke S, Jackman A. Comparison of ICI D1694 toxicity in two mouse strains. Proc Am Assoc Cancer Res 1993;34:274.

    Google Scholar 

  131. Jackman AL, Taylor GS, Gibson W, Kimbell R, Brown M, Calvert AH, et al. ICI D1694, a quinazoline antifolate thymidylate synthase inhibitor that is a potent inhibitor of L1210 tumor cell growthin vitro andin vivo: a new agent for clinical study. Cancer Res 1991;51:5579–86.

    PubMed  Google Scholar 

  132. Jordan E, Grem JL, Hamilton JM, Arbuck SG, Johnston P, Kohler DR, et al. Phase I trial of D1694, a pure thymidylate synthase inhibitor. Proc Am Assoc Clin Oncol 1993;12:158.

    Google Scholar 

  133. Judson I, Clarke S, Ward J, Spiers J, Smith R, Planting A, et al. Pharmacokinetic and phase I study of ICI D1694: a water soluble, antifolate, thymidylate synthase (TS) inhibitor. In: Ayling JE, Nair MG, Baugh CM, editors. Chemistry and biology of pteridines and folates. New York: Plenum Press. In press.

  134. Duch DS, Banks S, Dev IK, Dickerson SH, Ferone R, Heath LS, et al. Biochemical and cellular pharmacology of 1843U89, a novel benzoquinazoline inhibitor of thymidylate synthase. Cancer Res 1993;53:810–8.

    PubMed  Google Scholar 

  135. Fry DW, Jackson RC. Analysis of the role of membrane transport and polyglutamylation of methotrexate in gut and Ehrlich tumorin vivo as factor in drug sensitivity and selectivity. Cancer Res 1983;43:1087–92.

    PubMed  Google Scholar 

  136. Jackson RC, Johnston AL, Shetty BV, Varney MD, Webber S, Webber SE. Molecular design of thymidylate synthase inhibitors. Proc Am Assoc Cancer Res 1993;34:566–7.

    Google Scholar 

  137. Varney MD, Marzoni GP, Palmer CL, Deal JG, Webber S, Welsh K, et al. Crystal-structure-based design and synthesis of benz[cd]indole-containing inhibitors of thymidylate synthase. J Med Chem 1992;35:663–76.

    PubMed  Google Scholar 

  138. Cantwell BMJ, Harris AL. The efficacy of 5-fluorouracil in human colorectal cancer is not enhanced by thymidylate synthetase inhibition with CB3717 (N 10-propargyl-5,8-dideazafolic acid). Br J Cancer 1988;58:189–90.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Wilt, C.L., Peters, G.J. New targets for pyrimidine antimetabolites in the treatment of solid tumours. Pharm World Sci 16, 84–103 (1994). https://doi.org/10.1007/BF01880660

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01880660

Keywords

Navigation