Skip to main content
Log in

Kinetics of ionic transport across frog skin: Two concentration-dependent processes

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Sodium and chloride influxes across the nonshort-circuited isolated skin ofRana esculenta were measured at widely varying external ionic concentrations.

The curve describing sodium transport has two Michaelis-Menten components linked at an inflection point occurring at an external sodium concentration of about 7 meq. Chloride transport can also be represented by two saturating components. A possible explanation of these kinetics is discussed.

At sodium concentrations lower than 4 meq it is possible to define a component of the sodium transport mechanism as having a high affinity for sodium and which is independent of the nature of the external anion. A high affinity for chloride of the chloride transport system functioning at low external concentrations is also found but is significantly different from that of sodium. These systems show the physiological characteristics of the countertransports (Na +ext /H +int ; Cl ext /HCO 3int ) functioning at low external concentrations.

At external concentrations higher than 4 meq a low affinity transporting system in which chloride and sodium are linked superimpose on the high affinity components.

The physiological significance of these results is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarado, R.H., Dietz, T.H. 1970. Effect of salt depletion on hydromineral balance in larvalAmbystoma gracile. II. Kinetics of ion exchange.Comp. Biochem. Physiol. 33:93

    Google Scholar 

  • Alvarado, R.H., Dietz, T.H., Mullen, T.L. 1975. Chloride transport across the isolated skin ofRana pipiens.Am. J. Physiol. 229:869

    Google Scholar 

  • Alvarado, R.H., Poole, A.M., Mullen, T.L. 1975. Chloride balance inRana pipiens.Am. J. Physiol. 229:861

    Google Scholar 

  • Biber, T.U.L., Curran, P.F. 1970. Direct measurement of uptake of sodium at the outer surface of the frog skin.J. Gen. Physiol. 56:83

    Google Scholar 

  • Biber, T.U.L., Mullen, T.L. 1976. Saturation kinetics of sodium efflux across isolated frog skin.Am. J. Physiol. 231:995

    Google Scholar 

  • Brown, A.C. 1962. Current and potential of frogin vivo andin vitro.J. Cell. Comp. Physiol. 60:263

    Google Scholar 

  • Cereijido, M., Curran, P.F., 1965. Intracellular electrical potentials in frog skin.J. Gen. Physiol. 48:543

    Google Scholar 

  • Cereijido, M., Herrera, F.C., Flanigan, W., Curran, P.F. 1964. The influence of Na concentration on Na transport across frog skin.J. Gen. Physiol. 47:879

    Google Scholar 

  • Cruz, L.J., Biber, T.U.L. 1976. Transepithelial transport kinetics and Na entry in frog skin: Effects of novobiocin.Am. J. Physiol. 231:1866

    Google Scholar 

  • Curran, P.F., Gill, J.R. 1962. The effect of calcium transport by frog skin.J. Gen. Physiol. 45:625

    Google Scholar 

  • Cuthbert, A.W., Painter, E., Prince, W.T. 1969. The effects of anion on sodium transport.Br. J. Pharmacol. 36:97

    Google Scholar 

  • Dowd, J.E., Riggs, D.S. 1965. A comparison of estimates of Michaelis-Menten kinetic constants from various linear transformations.J. Biol. Chem. 240:863

    Google Scholar 

  • Ehrenfeld, J., Garcia-Romeu, F. 1977. Active hydrogen excretion and sodium absorption through isolated frog skin.Am. J. Physiol. 233:F46

    Google Scholar 

  • Ehrenfeld, J., Garcia-Romeu, F. 1978. Coupling between chloride absorption and base excretion in isolated skin ofRana esculenta.Am. J. Physiol. 235:F33

    Google Scholar 

  • Epstein, E. 1966. Dual pattern of ion absorption by plant cells and by plants.Nature (London) 212:1324

    Google Scholar 

  • Epstein, E., Rains, D.W., Elzam, O.E. 1963. Resolution of dual mechanisms of potassium absorption by barley roots.Proc. Nat. Acad. Sci. USA 49:684

    Google Scholar 

  • Erlij, D., Smith, M.W. 1973. Sodium uptake by frog skin and its modification by inhibitors of transepithelial sodium transport.J. Physiol. (London) 228:221

    Google Scholar 

  • Erlij, D., Smith, M.W. 1971. Sodium uptake by the outside of frog skin.J. Physiol. (London) 218:33P

    Google Scholar 

  • Ferreira, K.T.G., Guerrero, M.M., Ferreira, H. 1973. Kinetic characterization of the chloride dependence of sodium transport in the frog skin.Biochim. Biophys. Acta.291:269

    Google Scholar 

  • Ferreira K.T.G., Hill, B.S. 1978. Chloride dependence of active sodium transport in frog skin: The role of intercellular spaces.J. Physiol. (London) 283:183

    Google Scholar 

  • Garcia-Romeu, F., Ehrenfeld, J. 1975a.In vivo Na+ and Cl independent transport across the skin ofRana esculenta.Am. J. Physiol. 228:839

    Google Scholar 

  • Garcia-Romeu, F., Ehrenfeld, J. 1975b. Chloride transport through the non short-circuited isolated skin ofRana esculenta.Am. J. Physiol. 228:845

    Google Scholar 

  • Garcia-Romeu, F., Salibian, A., Pezzani-Hernandez, S. 1969. The nature of thein vivo sodium and chloride uptake mechanisms through the epithelium of the chilean frogCalyptocephalella gayi (Dum. et Bibr., 1841)J. Gen. Physiol. 53:816

    Google Scholar 

  • Gil Ferreira, K.T. 1968. Anionic dependence of sodium transport in the frog skin.Biochim. Biophys. Acta 150:587

    Google Scholar 

  • Gil Ferreira, K.T., Guerreiro, M.M., Gil Ferreira, H. 1973. Kinetic characterization of the chloride dependence of sodium transport in the frog skin.Biochim. Biophys. Acta 291:269

    Google Scholar 

  • Greenwald, L. 1971. Sodium balance in the leopard frog (Rana pipiens).Physiol. Zool. 44:149

    Google Scholar 

  • Greenwald, L. 1972. Sodium balance in amphibians from different habitats.Physiol. Zool. 45:229

    Google Scholar 

  • Helman, S.I., Fisher, R.S. 1977. Microelectrodes studies of the active Na transport pathway of frog skin.J. Gen. Physiol. 69:571

    Google Scholar 

  • Huf, E.G. 1972. The role of Cl and the other anions in active Na+ transport in the frog skin.Biochim. Biophys. Acta 84:366

    Google Scholar 

  • Kirschner, L.B. 1955. On the mechanism of active sodium transport across the frog skin.J. Cell. Comp. Physiol. 45:61

    Google Scholar 

  • Koefoed-Johnsen, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta. Physiol. Scand. 42:298

    Google Scholar 

  • Laties, G.G. 1975. Solute transport in relation to metabolism and membrane permeability in plant tissues.In: Historical and Current Aspects of Plant Physiology: A Symposium Honoring F.C. Steward, P.J. Davies, editor. pp. 98–151. New York State College of Agriculture and Life Sciences, Ithaca

    Google Scholar 

  • Lindley, B.D., Hoshiko, T. 1964. The effects of alkali metal cations and common anions on the frog skin potential.J. Gen. Physiol. 47:749

    Google Scholar 

  • Macey, R.I., Koblick, D.C. 1963. Effects of choline and other quaternary ammonium compounds on Na movements in frog skin.Am. J. Physiol. 205:1063

    Google Scholar 

  • Maetz, J. 1974. Aspects of adaptation to hypo-osmotic and hyperosmotic environments.In: Biochemical and Biophysical Perspectives in Marine Biology. DC. Malins and J.R. Sargent, editors. pp. 1–1666. Academic Press, London

    Google Scholar 

  • Mandel, L.J. 1978. Effects of pH, Ca, ADH, and theophylline on kinetics of Na entry in frog skin.Am. J. Physiol. 235:C35

    Google Scholar 

  • Mandel, L.J., Curran, P.F. 1973. Response of the frog skin to steady-state voltage clamping. II. The active pathway.J. Gen. Physiol. 62:1

    Google Scholar 

  • Moreno, J.H., Reisin, I.L., Rodriguez Boulan, E., Rotunno, C.A., Cereijido, M. 1973. Barriers to sodium movement across frog skin.J. Membrane Biol. 11:99

    Google Scholar 

  • Nagel, W. 1976. The intracellular electrical potential profile of the frog skin epithelium.Pfluegers Arch. 365:135

    Google Scholar 

  • Nagel, W. 1977. The dependence of the electrical potential across the membranes of the frog skin upon the concentration of sodium in the mucosal solution.J. Physiol. (London) 269:777

    Google Scholar 

  • Nissen, P. 1974. Uptake mechanisms: Inorganic and organic.Annu. Rev. Plant Physiol. 25:53

    Google Scholar 

  • Ques-von Petery, M.V., Rotunno, C.A., Cereijido, M. 1978. Studies on chloride permeability of the skin ofLeptodactylus ocellatus. I. Na+ and Cl effect on passive movements of Cl.J. Membrane Biol. 42:317

    Google Scholar 

  • Rawlins, F., Matheu, L., Fragachan, F., Whittembury, G. 1970. Isolated toad skin epithelium: Transport characteristics.Pfluegers, Arch. 316:64

    Google Scholar 

  • Rodriguez Boulan, E., Ques-von Petery, M.V., Rotunno, C.A., Cereijido, M. 1978. Studies on chloride permeability of the skin ofLeptodactylus ocellatus: III. Na+ and Cl effect on electrical phenomena.J. Membrane Biol. 42:345

    Google Scholar 

  • Rotunno, C.A., Ques-von Petery M.V., Cereijido, M. 1978. Studies on chloride permeability of theLeptodactylus ocellatus: II. Na+ and Cl effect on inward movements of Cl.J. Membrane Biol. 42:331

    Google Scholar 

  • Rotunno, C.A., Vilallonga, F.A., Fernandez, M., Cereijido, M. 1970. The penetration of sodium into the epithelium of the frog skin.J. Gen. Physiol. 55:716

    Google Scholar 

  • Smith, T.C., Martin, J.H., Huf, E.G. 1973. Na+ pool and Na+ concentration in epidermis of frog skin.Biochim. Biophys. Acta 291:465

    Google Scholar 

  • Steinbach, H.B. 1933. The electrical potential difference across living frog skin.J. Cell. Comp. Physiol. 3:1

    Google Scholar 

  • Ussing, H.H., Windhager, E.E. 1964. Nature of shunt path and active transport path through frog skin epithelium.Acta Physiol. Scand. 61:484

    Google Scholar 

  • Ussing, H.H., Zerahn, K. 1951. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin.Acta Physiol. Scand. 23:110

    Google Scholar 

  • Watlington, C.O. 1972. Regulation of sodium transport by alteration of chloride conductance.Biochim. Biophys. Acta 288:482

    Google Scholar 

  • Whittembury, G., 1964. Electrical potential profile of the toad skin epithelium.J. Gen. Physiol. 47:795

    Google Scholar 

  • Zadunaisky, J.A., De Fisch, F. 1964. Active and passive chloride movements across isolated amphibian skin.Am. J. Physiol. 207:1010

    Google Scholar 

  • Zeiske, W., Lindemann, B. 1974. Chemical stimulation of Na+ current through the outer surface of frog skin epithelium.Biochim. Biophys. Acta 352:323

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehrenfeld, J., Garcia-Romeu, F. Kinetics of ionic transport across frog skin: Two concentration-dependent processes. J. Membrain Biol. 56, 139–147 (1980). https://doi.org/10.1007/BF01875965

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01875965

key words

Navigation