Skip to main content
Log in

A numerical treatment of the periodic solutions of non-linear vibration systems

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Direct numerical integration can be used to find the periodic solutions for the equations of motion of nonlinear vibration systems. The initial conditions are iterated so that they coincide with the terminal conditions. The time interval of the integration (i.e., the period) and certain parameters of the equations of motion can be included in the iterations. The integration method has a variable steplength.

This shooting method can produce periodic solutions with a shorter computer time. The only error occurs in the numerical integration and it can therefore be estimated and made small enough. Using this method one can treat a variety of vibration problems, such as free conservative, forced, parameter-excited and self-sustained vibrations with one or several degrees-of-freedom. Unstable solutions and those which are sensitive to parameter changes can also be calculated. The stability of the solutions is investigated based on the theory of differential equations with periodic coefficients. The extrapolation method and the procedure of automatic steplength control are used to estimate the initial values of iterations by determining the resonance curve and other vibration characteristics.

Some examples have been calculated to illustrate the applicability of the method. The non-linearity may be expressed by an analytical function or any other functions, such as a piecewise linear function. Several remarkable features of nonlinear vibrations are presented through the periodic solutions obtained. Finally, some results are compared with those obtained by other approximation methods and experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hsu, C.S.,Limit cycle oscillations of parametrically excited second-order nonlinear systems, J. Appl. Mech., 42 (1975), 176–182.

    Google Scholar 

  2. Riganti, R.,A Study on the Forced Vibrations of a Class on Nonlinear Systems with Application to the Duffing Equation Part II: Numerical Treatment.Mechanica, 11 (1976), 81–88.

    Google Scholar 

  3. Mayfeh, A.H., and D.T. Mook,Nonlinear Oscillations, John Wiley & Sons, New York-Chichester-Brisbane-Toronto (1979).

    Google Scholar 

  4. Poincaré, H., Mémoire sur les courbes définies par une équations différentielles, J. Math. 3, Série, 7 (1881), 375–422.

    Google Scholar 

  5. Hsu, C.S.,Nonlinear Behaviour of Multibody Systems under Impulsive Parametric Excitation, in “Dynamics of Multibody Systems”, Springer, Berlin-Heidelberg-New York (1977).

    Google Scholar 

  6. Hsu, C.S.,On Nonlinear Parametric Excitation Problems, Adv. Appl. Mech., 17 (1977), 245–301.

    Google Scholar 

  7. Urabe, M.,Numerical determination of periodic solution of nonlinear system, J. Sci. Hiroshima Univ. Ser. A, 20 (1957), 125–148.

    Google Scholar 

  8. Urabe, M.,Infinitesimal deformation of cycles, J. Sci. Hiroshima Univ. Ser. A. 18 (1954), 37–53.

    Google Scholar 

  9. Urabe, M.,Remarks on periodic solutions of Van der Pol's equation, J. Sci. Hiroshima Univ. Ser. A, 24 (1960), 197–199.

    Google Scholar 

  10. Urabe, M.,Nonlinear Autonomous Oscillations, Akademic Press, New York-London (1967).

    Google Scholar 

  11. Ruf. W.-D.,Numerische Lösung des Diffing-Problems. Diplomarbeit, Institut A fur Mechanik, Uni. Stuttgart (1978).

  12. Ling, F.H.,Numerische Berechung periodischer Lösungen einiger nichtlinearer Schwingungssysteme, Dissertation, Uni. Stuttgart (1981).

  13. Poincare, H.,Les Méthodes nouvelles de la mecanique céleste Vol. 1, Guathiervillars, Paris (1892).

    Google Scholar 

  14. Liapunov, A.M.,Stability of Motion, Akademic Press, New York (1966).

    Google Scholar 

  15. Malkin, I.G.,Liapunov's Method and Po9ncare's Method in the Theory of Nonlinear Vibrations. (in Russian)

  16. Malkin, J.G.,Theorie der Stabilitat einer Bewegung, Verlag, Ôldenburg, Munchen (1959).

    Google Scholar 

  17. Kane, T.R. and D. Sobala,A new method for attitude stabilization, AIAA J., 1 (1963), 1365–1367.

    Google Scholar 

  18. Stoer, J. and R. Bulirsch,Einführung in die Numerische Mathematik II, Springer, Berlin-Heidelberg-New York (1978).

    Google Scholar 

  19. Fehlberg, E., Klassische Runge-Kutta Formeln funfter und siebenter Ordnung mit Schrittweiten-Kontrolle, Computing, 4 (1969), 93–106.

    Google Scholar 

  20. Fehlberg, E.,Klassische Runge-Kutta Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Warmeleitungsprobleme, Computing, 6 (1970), 61–71.

    Google Scholar 

  21. Shampine, L.F. and M.K. Gordon,Computer Solution of Ordinary Differential Equations, The initial Value Problem, W.H. Freema and Company, San Francisco (1975).

    Google Scholar 

  22. Stoker, J.J.,Nonlinear Vibrations in Mechanical and Electrical Systems, Interscience Publishers, New York-London (1950).

    Google Scholar 

  23. Schrapel, H.D.,Erweiterung eines Satzes von Andronow und Witt, ZAMM 57 (1977), T89-T90.

    Google Scholar 

  24. Moler, C. and C. Van Loan,Nineteen dubious ways to compute the exponential of a matrix, SIAM Rev., 20 (1978), 801–836.

    Google Scholar 

  25. Friedmann, P., C.E. Hammond and T.-H. Woo,Efficient numerical treatment of periodic systems with application to stability problems, Int. J. Num. Math. Eng., 11 (1977), 1117–1136.

    Google Scholar 

  26. Hsu C.S.,Impulsive parametrix excitation: theory, J. Appl Mech., 39 (1972), 551–558.

    Google Scholar 

  27. Hsu, C.S. and W.H. Cheng,Applications of the theory of impulsive parametric excitation and new treatments of general parametrix excitation problems, J. Appl. Mech., 40 (1973), 78–86.

    Google Scholar 

  28. Urabe, M. and A. Reiter,Numerical computation of nonlinear forced oscillations by Galerkin's procedure, J. Math. Anal. Appl., 14 (1966), 107–140.

    Google Scholar 

  29. Rosenberg, R.M. and C.P. Atkinson,On the natural modes and their stability in nonlinear two-degree-of-freedom systems, J. Appl. Mech., 26 (1959), 377–385.

    Google Scholar 

  30. Sehtna, P.R.,Steady-state undamped vibrations of a class of nonlinear discrete systems, J. Appl Mech. 27 (1960), 187–195.

    Google Scholar 

  31. Van Dooren, R.,Differential tones in a damped mechanical system with quadratic and cubic non-linearities, Int. J. Nonlinear Mech., 8 (1973), 575–583.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by He You-sheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu-hua, L. A numerical treatment of the periodic solutions of non-linear vibration systems. Appl Math Mech 4, 525–546 (1983). https://doi.org/10.1007/BF01874666

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01874666

Keywords

Navigation