Skip to main content
Log in

On the zigzagging causility model of EPR correlations and on the interpretation of quantum mechanics

  • Part III. Invited Papers Dedicated To David Bohm
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Being formalized inside the S-matrix scheme, the zigzagging causility model of EPR correlations has full Lorentz and CPT invariance. EPR correlations, proper or reversed, and Wheeler's smoky dragon metaphor are respectively pictured in spacetime or in the momentum-energy space, as V-shaped, A-shaped, or C-shaped ABC zigzags, with a summation at B over virtual states |B〉 〈B|. An exact “correspondence” exists between the Born-Jordan-Dirac “wavelike” algebra of transition amplitudes and the 1774 Laplace algebra of conditional probabilities, where the intermediate summations |B) (B| were over “real hidden states.” While the latter used conditional (or transition) probabilities (A|C) = (C|A), the former uses transition (or conditional) amplitudes 〈A|C〉 = 〈C|A〉*. The formal parrallelism breaks down at the level of interpretation because (A|C) = |〈A|C〉|2. CPT invariance implies the Fock and Watanabe principle that, in quantum mechanics, retarded (advanced) waves are used for prediction (retrodiction), an expression of which is 〈Ψ| U |Φ〉 = 〈Ψ| UΦ〉 = 〈ΦU|Φ〉, with |Φ〉 denoting a preparation, |Ψ〉 a measurement, and U the evolution operator. The transformation |Ψ〉 = |UΦ〉 or |Φ〉 = |U−1Ψ〉 exchanges the “preparation representation” and the “measurement representation” of a system and is ancillary in the formalization of the quantum chance game by the “wavelike algebra” of conditional amplitude. In 1935 EPR overlooked that a conditional amplitude 〈A|C〉 = Σ 〈A|B〉〈B|C〉 between the two distant measurements is at stake, and that only measurements actually performed do make sense. The reversibility 〈A|C〉 = 〈C|A〉* implies that causality is CPT-invariant, or arrowless, at the microlevel. Arrowed causality is a macroscopic emergence, corollary to wave retardation and probability increase. Factlike irreversibility states repression, not suppression, of “blind statistical retrodiction”—that is, of “final cause.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Einstein, B. Podolsky, and N. Rosen,Phys. Rev. 47, 777 (1935).

    Google Scholar 

  2. O. Costa de Beauregard,Nuovo Cimento 42B, 41 (1977);51B, 267 (1979).

    Google Scholar 

  3. O. Costa de Beauregard,Phys. Rev. Lett. 50, 867 (1983).

    Google Scholar 

  4. Lorentz and CPT Invariance and the Einstein-Podolsky-Rosen Correlations, inFoundations of Quantum Mechanics in the Light of New Technology, S. Kamefuchiet al., eds. (Physical Society of Japan, Tokyo, 1984, pp. 233–241.

    Google Scholar 

  5. M. Born,Z. Phys. 38, 803 (1926).

    Google Scholar 

  6. P. Jordan,Z. Phys. 40, 809 (1926).

    Google Scholar 

  7. S. Watanabe,Rev. Mod. Phys. 27, 26 (1955).

    Google Scholar 

  8. P. S. Laplace, “Mémoire sur la probabilité des causes,” inŒuvres Complètes, Vol. 8 (Gauthier-Villars, Paris, 1898), pp. 27–65, and subsequent papers.

    Google Scholar 

  9. L. Boltzmann,Lectures on Gas Theory, translated by S. Brush (University of California Press, Los Angeles, 1964), pp. 446–448.

    Google Scholar 

  10. E. T. Jaynes,Papers on Probability, Statistics and Statistical Physics, R. D. Rosenkranz, ed. (Reidel, Dordrecht, 1983).

    Google Scholar 

  11. H. Mehlberg, “Physical laws and the time arrow,” inCurrent Issues in the Philosophy of Science, H. Feigl and G. Maxwell, eds. (Holt, Rinehard & Winston, New York, 1961), pp. 105–138.

    Google Scholar 

  12. J. D. van der Waals,Physik. Z. 12, 547 (1911).

    Google Scholar 

  13. P. A. M. Dirac,The Principles of Quantum Mechanics, 3rd ed. (Clarendon Press, Oxford, 1947).

    Google Scholar 

  14. A. Landé,New Foundations of Quantum Mechanics (Cambridge University Press, 1965).

  15. R. P. Feynman,Phys. Rev. 76, 749, 769 (1949).

    Google Scholar 

  16. O. Costa de Beauregard,Found. Phys. 15, 871 (1985).

    Google Scholar 

  17. H. Bergson,Creative Evolution (Presses Universitaires, Paris, 1907), Chap. 2.

    Google Scholar 

  18. W. A. Miller and J. A. Wheeler, “Delayed-choice experiments and Bohr's elementary phenomenon,” inFoundations of Quantum Mechanics in the Light of New Technology, S. Kamefuchiet al., eds. (Physical Society of Japan, Tokyo, 1984), pp. 140–152.

    Google Scholar 

  19. Y. Aharonov and D. Z. Albert,Phys. Rev. D21, 3316 (1980);D24, 359 (1981).

    Google Scholar 

  20. O. Costa de Beauregard,Lett. Nuovo Cimento 31, 43 (1981);36, 39 (1982).

    Google Scholar 

  21. G. Racah,Nuovo Cimento 14, 322 (1937).

    Google Scholar 

  22. G. Lüders,Z. Phys. 133, 325 (1952).

    Google Scholar 

  23. J. Loschmidt,Sitz. Akad. Wiss. Wien 73, 139 (1876).

    Google Scholar 

  24. O. Costa de Beauregard,Found. Phys. 17, 787 (1987).

    Google Scholar 

  25. J. Schwinger,Phys. Rev. 74, 914 (1948).

    Google Scholar 

  26. V. Fock,Dokl. Akad. Nauk. SSSR 60, 1157 (1948).

    Google Scholar 

  27. J. von Neumann,Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932).

    Google Scholar 

  28. W. Ritz and A. Einstein,Phys. Z. 10, 323 (1909).

    Google Scholar 

  29. N. Cufaro-Petroni, C. Dewdney, P. K. Holland, A. Kyprianidis, and J. P. Vigier,Found. Phys. 17, 759 (1987).

    Google Scholar 

  30. H. Schmidt,Found. Phys. 12, 265 (1982).

    Google Scholar 

  31. R. Jahn and B. J. Dunne,Found. Phys. 16, 721 (1986).

    Google Scholar 

  32. A. Aspect, P. Grangier, and R. Roger,Phys. Rev. Lett. 47, 460 (1981);49, 91 (1982).

    Google Scholar 

  33. O. Costa de Beauregard, “Causality as identified with conditional probability and the quantal nonseparability,” inNew Techniques and Ideas in Quantum Measurement Theory, D. Greenberger, ed.,Ann. N.Y. Acad. Sci. 480, 317–325 (1986).

    Google Scholar 

  34. W. Heisenberg,Z. Phys. 43, 621 (1927).

    Google Scholar 

  35. C. von Weizsäcker,Z. Phys. 70, 114 (1931).

    Google Scholar 

  36. R. Omnès, preprint.

  37. A. Aspect, J. Dalibard, and R. Roger,Phys. Rev. Lett. 49, 1084 (1982).

    Google Scholar 

  38. D. Bohm,Quantum Theory (Prentice-Hall, Englewood Cliffs, 1951), pp. 614–622.

    Google Scholar 

  39. J. S. Bell, “Are there quantum jumps,” inSchrödinger: Centenary of a Polymath, C. Kilmister, ed. (Cambridge University Press, Cambridge, 1987), pp. 41–52.

    Google Scholar 

  40. O. Costa de Beauregard,Lett. Nuovo Cimento 25, 91 (1979).

    Google Scholar 

  41. R. I. Sutherland,Nuovo Cimento 88B, 114 (1985).

    Google Scholar 

  42. D. Z. Albert, Y. Alharonov, and S. d'Amato,Phys. Rev. Lett. 54, 5 (1985).

    Google Scholar 

  43. C. D. Galles,Epist. Lett. 25, 52 (1980).

    Google Scholar 

  44. A. Shimony, “The point we have reached,”Epist. Lett. 26, 1 (1980).

    Google Scholar 

  45. A. Einstein, inElectrons et Photons, Rapport et Discussions du Cinquième Conseil Solvay (Gauthier-Villars, Paris, 1928), pp. 253–256.

    Google Scholar 

  46. B. d'Espagnat,Conceptual Foundations of Quantum Mechanics, (2nd edn. Benjamin Addison Wesley, Reading, Mass., 1976).

    Google Scholar 

  47. G. Nicolis and I. Prigogine,Self Organization in Non-Equilibrium Systems (Wiley, New York, 1977).

    Google Scholar 

  48. B. d'Espagnat,Found. Phys. 17, 507 (1987).

    Google Scholar 

  49. F. Selleri and J. P. Vigier,Lett. Nuovo Cim. 29, 7 (1980).

    Google Scholar 

  50. P. Davies,Other Worlds (Dent, London, 1980), p. 124.

    Google Scholar 

  51. J. C. Eccles,Proc. Roy. Soc. London 22, 411 (1986).

    Google Scholar 

  52. B. Libet,Behavioral and Brain Sciences 8, 529 (1986).

    Google Scholar 

  53. J. S. Bell,Physics 1, 195 (1965).

    Google Scholar 

  54. O. Costa de Beauregard,Comptes Rendus Acad. Sci. Paris 236, 1632 (1953).

    Google Scholar 

  55. H. P. Stapp,Nuovo Cimento 28B, 7 (1980).

    Google Scholar 

  56. W. C. Davidson,Nuovo Cimento 36B, 34 (1976).

    Google Scholar 

  57. J. Rayski,Found. Phys. 9, 217 (1979).

    Google Scholar 

  58. W. Rietdijk,Found. Phys. 10, 403 (1980).

    Google Scholar 

  59. J. G. Cramer,Phys. Rev. D22, 362 (1980).

    Google Scholar 

  60. R. I. Sutherland,Int. J. Theor. Phys. 22, 377 (1983).

    Google Scholar 

  61. A. Zeilinger,Phys. Lett. A 118, 1 (1986).

    Google Scholar 

  62. P. Mittelstaedt, “Analysis of the EPR experiment by relativistic quantum logic,” inFoundations of Quantum Mechanics in the Light of New Technology, S. Kamefuchiet al., eds. (Physical Society of Japan, Tokyo, 1983), pp. 251–255.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor David Bohm, proponent of the EPRB version of nonseparability.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Beauregard, O.C. On the zigzagging causility model of EPR correlations and on the interpretation of quantum mechanics. Found Phys 18, 913–938 (1988). https://doi.org/10.1007/BF01855942

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01855942

Keywords

Navigation