Skip to main content
Log in

The ideal Boson gas in an external scalar potential

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a new way of going to the infinite volume thermodynamic limit for a finite density quantum system and apply it to the case of an ideal Boson gas. We describe two procedures for calculating the particle density in the thermodynamic limit, one local and one global, and show that they give different values for the density. Further calculations show that this discrepancy is caused by lack of macroscopic translation invariance of the system, which is not apparent at the microscopic level. We calculate the limiting value of the expectation function of the Weyl operators both above and below the critical density for Bose-Einstein condensation, and show that the condensate has paradoxical properties of a similar type to those recently discovered for the rotating Boson gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araki, H., Woods, E.J.: Representations of the canonical commutation relations describing a non-relativistic infinite free Bose gas. J. Math. Phys.4, 637–662 (1963).

    Google Scholar 

  2. Cannon, J.T.: Infinite volume limits of the canonical free Bose gas states on the Weyl algebra. Commun. math. Phys.29, 89–104 (1973).

    Google Scholar 

  3. Davies, E.B.: Quantum stochastic processes. Commun. math. Phys.15, 277–304 (1969).

    Google Scholar 

  4. Davies, E.B.: The thermodynamic limit for an imperfect Boson gas. Commun. math. Phys.28, 69–86 (1972).

    Google Scholar 

  5. Davies, E.B.: A generalisation of Kaplansky's theorem. J. London Math. Soc.4, 435–436 (1972).

    Google Scholar 

  6. Davies, E.B.: Properties of the Green's functions of some Schrödinger operators. To appear, in J. London Math. Soc.

  7. Garrod, C., Simmons, C.: Rigorous statistical mechanics for non-uniform systems. J. Math. Phys.13, 1168–1176 (1972).

    Google Scholar 

  8. Gates, D.J., Penrose, O.: The van der Waals limit for classical systems. I. A variational principle. Commun. math. Phys.15, 255–276 (1969).

    Google Scholar 

  9. Huang, K.: Statistical mechanics. London-New York: J. Wiley and Sons 1967.

    Google Scholar 

  10. Kac, M.: Private manuscript.

  11. Kato, T.: Perturbation theory of linear operators. Berlin-Heidelberg-New York: Springer 1966.

    Google Scholar 

  12. Lewis, J.T., Pulè, J.: The equilibrium states of the free Boson gas. To appear.

  13. Lewis, J.T., Pulè, J.: The free Boson gas in a rotating bucket. To appear.

  14. Marchioro, C., Presutti, E.: Thermodynamics of particle systems in the presence of external macroscopic fields. I. Classical case. Commun. math. Phys.27, 146–154 (1972).

    Google Scholar 

  15. Messiah, A.: Quantum mechanics Vol. 1. Amsterdam: North-Holland Publ. Co. 1965.

    Google Scholar 

  16. Millard, K.: A statistical mechanical approach to the problem of a fluid in an external field. J. Math. Phys.13, 222–228 (1972).

    Google Scholar 

  17. Pulè, J.: D. Phil. thesis Oxford University 1972.

  18. Ruelle, D.: Statistical mechanics, rigorous results. New York: W. A. Benjamin Inc. 1969.

    Google Scholar 

  19. Schechter, M.: Spectra of partial differential operators. Amsterdam North-Holland Publ. Co. 1971.

  20. Titchmarsh, E. C.: Eigenfunction expansions, Part 1. Oxford Univ. Press, 2nd edition 1962.

  21. Titchmarsh, E. C.: Eigenfunction expansions, Part 2. Oxford Univ. Press, 1958.

  22. Watson, G.N.: Notes on generating functions of polynomials. J. London Math. Soc.8, 194–199 (1933).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies, E.B. The ideal Boson gas in an external scalar potential. Commun.Math. Phys. 30, 229–247 (1973). https://doi.org/10.1007/BF01837360

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01837360

Keywords

Navigation