Skip to main content

How to find Steiner minimal trees in euclideand-space


This paper has two purposes. The first is to present a new way to find a Steiner minimum tree (SMT) connectingN sites ind-space,d >- 2. We present (in Appendix 1) a computer code for this purpose. This is the only procedure known to the author for finding Steiner minimal trees ind-space ford > 2, and also the first one which fits naturally into the framework of “backtracking” and “branch-and-bound.” Finding SMTs of up toN = 12 general sites ind-space (for anyd) now appears feasible.

We tabulate Steiner minimal trees for many point sets, including the vertices of most of the regular and Archimedeand-polytopes with <- 16 vertices. As a consequence of these tables, the Gilbert-Pollak conjecture is shown to be false in dimensions 3–9. (The conjecture remains open in other dimensions; it is probably false in all dimensionsd withd ≥ 3, but it is probably true whend = 2.)

The second purpose is to present some new theoretical results regarding the asymptotic computational complexity of finding SMTs to precision ɛ.

We show that in two-dimensions, Steiner minimum trees may be found exactly in exponential time O(C N) on a real RAM. (All previous provable time bounds were superexponential.) If the tree is only wanted to precision ɛ, then there is an (N/ɛ)O(√N)-time algorithm, which is subexponential if 1/ɛ grows only polynomially withN. Also, therectilinear Steiner minimal tree ofN points in the plane may be found inN O(√N) time.

J. S. Provan devised an O(N 64)-time algorithm for finding the SMT of a convexN-point set in the plane. (Also the rectilinear SMT of such a set may be found in O(N 6) time.) One therefore suspects that this problem may be solved exactly in polynomial time. We show that this suspicion is in fact true—if a certain conjecture about the size of “Steiner sensitivity diagrams” is correct.

All of these algorithms are for a “real RAM” model of computation allowing infinite precision arithmetic. They make no probabilistic or other assumptions about the input; the time bounds are valid in the worst case; and all our algorithms may be implemented with a polynomial amount of space. Only algorithms yielding theexact optimum SMT, or trees with lengths ≤ (1 + ɛ) × optimum, where ɛ is arbitrarily small, are considered here.

This is a preview of subscription content, access via your institution.


  1. [1]

    A. V. Aho, M. R. Garey, and F. K. Hwang: Rectilinear Steiner trees: Efficient special case algorithms,Networks,7 (1977), 37–58.

    MATH  Article  MathSciNet  Google Scholar 

  2. [2]

    M. Ajtai, V. Chvatal, M. M. Newborn, and E. Szemeredi: Crossing free subgraphs,Ann. Discrete Math.,12 (1982), 9–12.

    MATH  MathSciNet  Google Scholar 

  3. [3]

    S. K. Chang: The generation of minimal trees with a Steiner topology,J. Assoc. Comput. Math.,19 (1972), 699–711.

    MATH  Google Scholar 

  4. [4]

    F. R. K. Chung and E. N. Gilbert: Steiner trees for the regular simplex,Bull. Inst. Math. Acad. Sinica,4 (1976), 313–325.

    MATH  MathSciNet  Google Scholar 

  5. [5]

    F. R. K. Chung and R. L. Graham: A new bound for Euclidean Steiner trees,Ann. N. Y. Acad. Sci,440 (1985), 328–346.

    Article  MathSciNet  Google Scholar 

  6. [6]

    E. J. Cockayne: On Fermat's problem on the surface of a sphere,Math. Mag.,45 (1972), 216–219.

    MATH  MathSciNet  Article  Google Scholar 

  7. [7]

    E. J. Cockayne and D. E. Hewgill: Exact computation of Steiner minimal trees in the plane,Inform. Process. Lett.,22 (1986), 151–156.

    MATH  Article  MathSciNet  Google Scholar 

  8. [8]

    U. Derigs: A shortest augmenting path method for solving minimum perfect matching problems,Networks,11 (1981), 379–390.

    MATH  Article  MathSciNet  Google Scholar 

  9. [9]

    D. Z. Du: On Steiner ratio conjectures, manuscript, Inst. Appl. Math. Academia Sinica, Beijing, China, 1989.

    Google Scholar 

  10. [10]

    D. Z. Du: The Steiner ratio conjecture is true for six points, to be published.

  11. [11]

    D. Z. Du, F. K. Hwang, and J. F. Weng: Steiner minimal trees for regular polygons,Discrete Comput. Geom.,2, 1 (1987), 65–87.

    MATH  Article  MathSciNet  Google Scholar 

  12. [12]

    H. Edelsbrunner:Algorithms in Combinatorial Geometry, EATCS Monographs in Theoretical Computer Science, Springer-Verlag, Berlin, 1987.

    Google Scholar 

  13. [13]

    J. H. Friedman, J. L. Bentley, and R. A. Finkel: An algorithm for performing best matches in logarithmic expected time,ACMTOMS,3, 3 (1977), 209–226.

    MATH  Google Scholar 

  14. [14]

    M. R. Garey and D. S. Johnson: The complexity of computing Steiner minimum trees,SIAM J. Algebraic Discrete Methods,32 (1977), 835–859.

    MATH  MathSciNet  Google Scholar 

  15. [15]

    M. R. Garey and D. S. Johnson: The rectilinear Steiner minimum tree problem is NP-completeSIAM J. Algebraic Discrete Methods,32 (1977), 826–834.

    MATH  MathSciNet  Google Scholar 

  16. [16]

    E. Gekeler: On the solution of systems of equations by the epsilon algorithm of Wynn,Math. Comp.,26, 118 (1972), 427–436.

    MATH  Article  MathSciNet  Google Scholar 

  17. [17]

    G. Georgakopoulos and C. H. Papadimitriou: The 1-Steiner tree problem,J. Algorithms, 8 (1987), 122–130.

    MATH  Article  MathSciNet  Google Scholar 

  18. [18]

    E. N. Gilbert and H. O. Pollak: Steiner minimal trees,SIAM J. Appl. Math.,16 (1968), 1–29.

    MATH  Article  MathSciNet  Google Scholar 

  19. [19]

    R. L. Graham and F. K. Hwang: Remarks on Steiner minimal trees I,Bull. Inst. Math. Acad. Sinica,4 (1976), 177–182.

    MATH  MathSciNet  Google Scholar 

  20. [20]

    M. Hanan: On Steiner's problem with rectilinear distance,SIAM J. Appl. Math.,14 (1966), 255–265.

    MATH  Article  MathSciNet  Google Scholar 

  21. [21]

    K. Heibig-Hansen and J. Krarup: Improvements of the Held-Karp algorithm for the symmetric TSP,Math. Programming,7 (1974), 87–96.

    Article  MathSciNet  Google Scholar 

  22. [22]

    M. Held and R. M. Karp: The traveling salesman problem and minimum spanning trees,Oper. Res.,18 (1970), 1138–1162.

    MATH  MathSciNet  Article  Google Scholar 

  23. [23]

    M. Held and R. M. Karp: The traveling salesman problem and minimum spanning trees, part II,Math. Programming,1 (1971), 6–25.

    MATH  Article  MathSciNet  Google Scholar 

  24. [24]

    J. E. Hopcroft and R. E. Tarjan: Efficient planarity testing,J. Assoc. Comput. Math.,21 (1974), 549–558.

    MATH  MathSciNet  Google Scholar 

  25. [25]

    F. K. Hwang: A linear time algorithm for full Steiner trees,Oper. Res. Lett.,5 (1986), 235–237.

    Article  Google Scholar 

  26. [26]

    F. K. Hwang and D. S. Richards: Steiner tree problems, Bell Laboratories, Murray Hill, NJ, Technical Memorandum 1989. To be published inNetworks.

    Google Scholar 

  27. [27]

    F. K. Hwang, G. D. Song, G. Y. Ting, and D. Z. Du: A decomposition theorem on Euclidean Steiner minimal trees,Discrete Comput. Geom.,3, 4 (1988), 367–392.

    MATH  Article  MathSciNet  Google Scholar 

  28. [28]

    F. K. Hwang and J. F. Weng: Hexagonal coordinate systems and Steiner minimal trees,Discrete Math.,62 (1986), 49–57.

    MATH  Article  MathSciNet  Google Scholar 

  29. [29]

    F. K. Hwang and J. F. Weng: The shortest network with a given topology, Bell Laboratories, Murray Hill, NJ, Technical Memorandum 1988.

    Google Scholar 

  30. [30]

    A. N. C. Kang and D. A. Ault: Some properties of the centroid of a free tree,Inform. Process. Lett,4, 1 (1975), 18–20.

    MATH  Article  MathSciNet  Google Scholar 

  31. [31]

    B. Kernighan and D. Ritchie:The C Programming Language, Prentice-Hall, Englewood Cliffs, NJ, 1978.

    Google Scholar 

  32. [32]

    J. R. Kruskal Jr.: On the shortest spanning subtree of a graph and the traveling salesman problem,Proc. Amer. Math. Soc.,7, 1 (1956), 48–50.

    Article  MathSciNet  Google Scholar 

  33. [33]

    H. W. Kuhn; On a pair of dual nonlinear programs, in:Methods of Nonlinear Programming, pp. 38–54, Ed. J. Abadie, North-Holland, Amsterdam, 1967.

    Google Scholar 

  34. [34]

    H. W. Kuhn: A note on Fermat's problem,Math. Programming,4 (1973), 98–107.

    MATH  Article  MathSciNet  Google Scholar 

  35. [35]

    E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Schmoys (eds.)The TST, A Guided Tour of Combinatoral Optimization, Wiley-Interscience, New York, 1985.

    Google Scholar 

  36. [36]

    Z. A. Melzak: On the problem of Steiner,Canad. Math. Bull.,4 (1961), 143–148.

    MATH  MathSciNet  Google Scholar 

  37. [37]

    G. L. Miller: Finding small simple cycle separators for 2-connected planar graphs,J. Comput. System Sci.,32 (1986), 265–179.

    MATH  Article  MathSciNet  Google Scholar 

  38. [38]

    J. Milnor: On the Betti numbers of real algebraic varieties,Amer. Math. Soc.,15 (1964), 275–280.

    MATH  Article  MathSciNet  Google Scholar 

  39. [39]

    C. Monma, M. Paterson, S. Suri, and F. Yao: Computing Euclidean maximum spanning trees, ACM Computational Geometry Conference 1988, pp. 241–251.

  40. [40]

    F. P. Preparata and M. I. Shamos:Computational Geometry: An Introduction, Springer-Verlag, New York, 1985.

    Google Scholar 

  41. [41]

    R. C. Prim: Shortest Connection Networks and Some Generalizations,Bell System Tech. J.,36 (1957), 1389–1401.

    Google Scholar 

  42. [42]

    J. S. Provan: Convexity and the Steiner tree problem,Networks,18 (1988), 55–72.

    MATH  Article  MathSciNet  Google Scholar 

  43. [43]

    P. W. Shor and W. D. Smith: Steiner hulls and θ-hulls, manuscript, 1989.

  44. [44]

    W. D. Smith: Studies in Discrete and Computational Geometry, Ph.D. Thesis, Program in Applied and Computational Mathematics, Princeton University, September 1988.

  45. [45]

    D. Smith: Finding the optimum traveling salesman tour forN sites in the Euclidean plane in subexponential time and polynomial space,SIAM J. Comput., submitted.

  46. [46]

    J. M. Smith, D. T. Lee, and J. S. Liebman: A O(N 1gN) algorithm for Steiner minimal tree problems in the Euclidean metric,Networks,11 (1981), 23–29.

    MATH  Article  MathSciNet  Google Scholar 

  47. [47]

    J. Soukup: Minimum Steiner trees, roots of a polynomial, and other magic,ACM SIGMAP Newsletter,22 (1977), 37–51.

    Google Scholar 

  48. [48]

    R. P. Stanley: The number of faces of simplicial poly topes and spheres, in: Discrete Geometry and Convexity,Proc. N. Y. Acad. Sci., (1986).

  49. [49]

    R. E. Tarjan: Data structures and network algorithms, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 44, Society of Industrial and Applied Mathematics, Philadelphia, PA, 1983.

    Google Scholar 

  50. [50]

    J. V. Uspensky:Theory of Equations, McGraw-Hill, New York, 1948.

    Google Scholar 

  51. [51]

    B. L. van der Waerden:Algebra, Ungar, New York, 1970.

    Google Scholar 

  52. [52]

    H. E. Warren: Lower Bounds for approximation by nonlinear manifolds,Trans. Amer. Math. Soc., 133 (1968), 167–178.

    MATH  Article  MathSciNet  Google Scholar 

  53. [53]

    P. Winter: An algorithm for the Steiner problem in the Euclidean Plane,Networks,15 (1985), 323–345.

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information



Additional information

Communicated by F. K. Hwang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smith, W.D. How to find Steiner minimal trees in euclideand-space. Algorithmica 7, 137–177 (1992).

Download citation

Key words

  • Steiner trees
  • Gilbert-Pollak conjecture
  • Subexponential algorithms
  • Regular polytopes
  • Sensitivity diagrams