## Abstract

This paper has two purposes. The first is to present a new way to find a Steiner minimum tree (SMT) connecting*N* sites in*d*-space,*d* >- 2. We present (in Appendix 1) a computer code for this purpose. This is the only procedure known to the author for finding Steiner minimal trees in*d*-space for*d* > 2, and also the first one which fits naturally into the framework of “backtracking” and “branch-and-bound.” Finding SMTs of up to*N* = 12 general sites in*d*-space (for any*d*) now appears feasible.

We tabulate Steiner minimal trees for many point sets, including the vertices of most of the regular and Archimedean*d*-polytopes with <- 16 vertices. As a consequence of these tables, the Gilbert-Pollak conjecture is shown to be false in dimensions 3–9. (The conjecture remains open in other dimensions; it is probably false in all dimensions*d* with*d* ≥ 3, but it is probably true when*d* = 2.)

The second purpose is to present some new theoretical results regarding the asymptotic computational complexity of finding SMTs to precision ɛ.

We show that in two-dimensions, Steiner minimum trees may be found exactly in exponential time O(*C* ^{ N }) on a real RAM. (All previous provable time bounds were superexponential.) If the tree is only wanted to precision ɛ, then there is an (*N*/ɛ)^{O(√N)}-time algorithm, which is subexponential if 1/ɛ grows only polynomially with*N*. Also, the*rectilinear* Steiner minimal tree of*N* points in the plane may be found in*N* ^{O(√N)} time.

J. S. Provan devised an O(*N* ^{6}/ɛ^{4})-time algorithm for finding the SMT of a convex*N*-point set in the plane. (Also the rectilinear SMT of such a set may be found in O(*N* ^{6}) time.) One therefore suspects that this problem may be solved exactly in polynomial time. We show that this suspicion is in fact true—if a certain conjecture about the size of “Steiner sensitivity diagrams” is correct.

All of these algorithms are for a “real RAM” model of computation allowing infinite precision arithmetic. They make no probabilistic or other assumptions about the input; the time bounds are valid in the worst case; and all our algorithms may be implemented with a polynomial amount of space. Only algorithms yielding the*exact* optimum SMT, or trees with lengths ≤ (1 + ɛ) × optimum, where ɛ is arbitrarily small, are considered here.

## Key words

Steiner trees Gilbert-Pollak conjecture Subexponential algorithms Regular polytopes Sensitivity diagrams## Preview

Unable to display preview. Download preview PDF.

## References

- [1]A. V. Aho, M. R. Garey, and F. K. Hwang: Rectilinear Steiner trees: Efficient special case algorithms,
*Networks*,**7**(1977), 37–58.MATHCrossRefMathSciNetGoogle Scholar - [2]M. Ajtai, V. Chvatal, M. M. Newborn, and E. Szemeredi: Crossing free subgraphs,
*Ann. Discrete Math.*,**12**(1982), 9–12.MATHMathSciNetGoogle Scholar - [3]S. K. Chang: The generation of minimal trees with a Steiner topology,
*J. Assoc. Comput. Math.*,**19**(1972), 699–711.MATHGoogle Scholar - [4]F. R. K. Chung and E. N. Gilbert: Steiner trees for the regular simplex,
*Bull. Inst. Math. Acad. Sinica*,**4**(1976), 313–325.MATHMathSciNetGoogle Scholar - [5]F. R. K. Chung and R. L. Graham: A new bound for Euclidean Steiner trees,
*Ann. N. Y. Acad. Sci*,**440**(1985), 328–346.CrossRefMathSciNetGoogle Scholar - [6]E. J. Cockayne: On Fermat's problem on the surface of a sphere,
*Math. Mag.*,**45**(1972), 216–219.MATHMathSciNetCrossRefGoogle Scholar - [7]E. J. Cockayne and D. E. Hewgill: Exact computation of Steiner minimal trees in the plane,
*Inform. Process. Lett.*,**22**(1986), 151–156.MATHCrossRefMathSciNetGoogle Scholar - [8]U. Derigs: A shortest augmenting path method for solving minimum perfect matching problems,
*Networks*,**11**(1981), 379–390.MATHCrossRefMathSciNetGoogle Scholar - [9]D. Z. Du: On Steiner ratio conjectures, manuscript, Inst. Appl. Math. Academia Sinica, Beijing, China, 1989.Google Scholar
- [10]D. Z. Du: The Steiner ratio conjecture is true for six points, to be published.Google Scholar
- [11]D. Z. Du, F. K. Hwang, and J. F. Weng: Steiner minimal trees for regular polygons,
*Discrete Comput. Geom.*,**2**, 1 (1987), 65–87.MATHCrossRefMathSciNetGoogle Scholar - [12]H. Edelsbrunner:
*Algorithms in Combinatorial Geometry*, EATCS Monographs in Theoretical Computer Science, Springer-Verlag, Berlin, 1987.Google Scholar - [13]J. H. Friedman, J. L. Bentley, and R. A. Finkel: An algorithm for performing best matches in logarithmic expected time,
*ACMTOMS*,**3**, 3 (1977), 209–226.MATHGoogle Scholar - [14]M. R. Garey and D. S. Johnson: The complexity of computing Steiner minimum trees,
*SIAM J. Algebraic Discrete Methods*,**32**(1977), 835–859.MATHMathSciNetGoogle Scholar - [15]M. R. Garey and D. S. Johnson: The rectilinear Steiner minimum tree problem is NP-complete
*SIAM J. Algebraic Discrete Methods*,**32**(1977), 826–834.MATHMathSciNetGoogle Scholar - [16]E. Gekeler: On the solution of systems of equations by the epsilon algorithm of Wynn,
*Math. Comp.*,**26**, 118 (1972), 427–436.MATHCrossRefMathSciNetGoogle Scholar - [17]G. Georgakopoulos and C. H. Papadimitriou: The 1-Steiner tree problem,
*J. Algorithms*, 8 (1987), 122–130.MATHCrossRefMathSciNetGoogle Scholar - [18]E. N. Gilbert and H. O. Pollak: Steiner minimal trees,
*SIAM J. Appl. Math.*,**16**(1968), 1–29.MATHCrossRefMathSciNetGoogle Scholar - [19]R. L. Graham and F. K. Hwang: Remarks on Steiner minimal trees I,
*Bull. Inst. Math. Acad. Sinica*,**4**(1976), 177–182.MATHMathSciNetGoogle Scholar - [20]M. Hanan: On Steiner's problem with rectilinear distance,
*SIAM J. Appl. Math.*,**14**(1966), 255–265.MATHCrossRefMathSciNetGoogle Scholar - [21]K. Heibig-Hansen and J. Krarup: Improvements of the Held-Karp algorithm for the symmetric TSP,
*Math. Programming*,**7**(1974), 87–96.CrossRefMathSciNetGoogle Scholar - [22]M. Held and R. M. Karp: The traveling salesman problem and minimum spanning trees,
*Oper. Res.*,**18**(1970), 1138–1162.MATHMathSciNetCrossRefGoogle Scholar - [23]M. Held and R. M. Karp: The traveling salesman problem and minimum spanning trees, part II,
*Math. Programming*,**1**(1971), 6–25.MATHCrossRefMathSciNetGoogle Scholar - [24]J. E. Hopcroft and R. E. Tarjan: Efficient planarity testing,
*J. Assoc. Comput. Math.*,**21**(1974), 549–558.MATHMathSciNetGoogle Scholar - [25]F. K. Hwang: A linear time algorithm for full Steiner trees,
*Oper. Res. Lett.*,**5**(1986), 235–237.CrossRefGoogle Scholar - [26]F. K. Hwang and D. S. Richards: Steiner tree problems, Bell Laboratories, Murray Hill, NJ, Technical Memorandum 1989. To be published in
*Networks.*Google Scholar - [27]F. K. Hwang, G. D. Song, G. Y. Ting, and D. Z. Du: A decomposition theorem on Euclidean Steiner minimal trees,
*Discrete Comput. Geom.*,**3**, 4 (1988), 367–392.MATHCrossRefMathSciNetGoogle Scholar - [28]F. K. Hwang and J. F. Weng: Hexagonal coordinate systems and Steiner minimal trees,
*Discrete Math.*,**62**(1986), 49–57.MATHCrossRefMathSciNetGoogle Scholar - [29]F. K. Hwang and J. F. Weng: The shortest network with a given topology, Bell Laboratories, Murray Hill, NJ, Technical Memorandum 1988.Google Scholar
- [30]A. N. C. Kang and D. A. Ault: Some properties of the centroid of a free tree,
*Inform. Process. Lett*,**4**, 1 (1975), 18–20.MATHCrossRefMathSciNetGoogle Scholar - [31]B. Kernighan and D. Ritchie:
*The C Programming Language*, Prentice-Hall, Englewood Cliffs, NJ, 1978.Google Scholar - [32]J. R. Kruskal Jr.: On the shortest spanning subtree of a graph and the traveling salesman problem,
*Proc. Amer. Math. Soc.*,**7**, 1 (1956), 48–50.CrossRefMathSciNetGoogle Scholar - [33]H. W. Kuhn; On a pair of dual nonlinear programs, in:
*Methods of Nonlinear Programming*, pp. 38–54, Ed. J. Abadie, North-Holland, Amsterdam, 1967.Google Scholar - [34]H. W. Kuhn: A note on Fermat's problem,
*Math. Programming*,**4**(1973), 98–107.MATHCrossRefMathSciNetGoogle Scholar - [35]E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Schmoys (eds.)
*The TST, A Guided Tour of Combinatoral Optimization*, Wiley-Interscience, New York, 1985.Google Scholar - [36]Z. A. Melzak: On the problem of Steiner,
*Canad. Math. Bull.*,**4**(1961), 143–148.MATHMathSciNetGoogle Scholar - [37]G. L. Miller: Finding small simple cycle separators for 2-connected planar graphs,
*J. Comput. System Sci.*,**32**(1986), 265–179.MATHCrossRefMathSciNetGoogle Scholar - [38]J. Milnor: On the Betti numbers of real algebraic varieties,
*Amer. Math. Soc.*,**15**(1964), 275–280.MATHCrossRefMathSciNetGoogle Scholar - [39]C. Monma, M. Paterson, S. Suri, and F. Yao: Computing Euclidean maximum spanning trees, ACM Computational Geometry Conference 1988, pp. 241–251.Google Scholar
- [40]F. P. Preparata and M. I. Shamos:
*Computational Geometry: An Introduction*, Springer-Verlag, New York, 1985.Google Scholar - [41]R. C. Prim: Shortest Connection Networks and Some Generalizations,
*Bell System Tech. J.*,**36**(1957), 1389–1401.Google Scholar - [42]J. S. Provan: Convexity and the Steiner tree problem,
*Networks*,**18**(1988), 55–72.MATHCrossRefMathSciNetGoogle Scholar - [43]P. W. Shor and W. D. Smith: Steiner hulls and θ-hulls, manuscript, 1989.Google Scholar
- [44]W. D. Smith: Studies in Discrete and Computational Geometry, Ph.D. Thesis, Program in Applied and Computational Mathematics, Princeton University, September 1988.Google Scholar
- [45]D. Smith: Finding the optimum traveling salesman tour for
*N*sites in the Euclidean plane in subexponential time and polynomial space,*SIAM J. Comput.*, submitted.Google Scholar - [46]J. M. Smith, D. T. Lee, and J. S. Liebman: A O(
*N*1g*N*) algorithm for Steiner minimal tree problems in the Euclidean metric,*Networks*,**11**(1981), 23–29.MATHCrossRefMathSciNetGoogle Scholar - [47]J. Soukup: Minimum Steiner trees, roots of a polynomial, and other magic,
*ACM SIGMAP Newsletter*,**22**(1977), 37–51.Google Scholar - [48]R. P. Stanley: The number of faces of simplicial poly topes and spheres, in: Discrete Geometry and Convexity,
*Proc. N. Y. Acad. Sci.*, (1986).Google Scholar - [49]R. E. Tarjan: Data structures and network algorithms, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 44, Society of Industrial and Applied Mathematics, Philadelphia, PA, 1983.Google Scholar
- [50]J. V. Uspensky:
*Theory of Equations*, McGraw-Hill, New York, 1948.Google Scholar - [51]B. L. van der Waerden:
*Algebra*, Ungar, New York, 1970.Google Scholar - [52]H. E. Warren: Lower Bounds for approximation by nonlinear manifolds,
*Trans. Amer. Math. Soc.*, 133 (1968), 167–178.MATHCrossRefMathSciNetGoogle Scholar - [53]P. Winter: An algorithm for the Steiner problem in the Euclidean Plane,
*Networks*,**15**(1985), 323–345.MATHCrossRefMathSciNetGoogle Scholar