Skip to main content
Log in

Nondenaturational structural transitions of proteins and biological membranes

  • Review and General Articles
  • a. review articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

This study is concerned with nondenaturational structural rearrangements of proteins in solution under the influence of physiologically moderate temperatures and salts.

Temperature-induced rearrangements are viewed as the reason for breaks in Arrhenius curves of the enzymatic activity. In the cytosol as well as in biological membranes, proteins remain conformationally labile and participate in cooperative structural transitions of membranes. Such transitions are initiated by physiologically moderate temperatures, hormones, salts and aminoacids and affect the functional activity of cell membranes. It is suggested that structural lability of proteins and membranes is of importance in metabolic regulation.

It may be said without any exaggeration that a basic objective of biochemistry and biophysics is to find the mechanisms by which coordination of numerous chemical and physicochemical processes along with adaptation to a changing environment can be regulated by the cell. An analysis of a large body of accumulated material and information on this subject leads us to a simple idea; namely, that metabolism is regulated primarily through weak physicochemical interactions. It is weak bonds arising at the sites of contact between effector and regulated macromolecules which serve as a trigger for the regulatory mechanisms of various types. This principle is fundamental for the long range mechanism and for the short-range cytoplasmic allosteric enzyme regulation. In each regulatory act of this type the regulated macromolecule undergoes conformational transition between the states of different functional activity.

It is generally recognized1,2 that in most cases conformational transition is cooperative by nature. However, biopolymers in a cell are an integral part of compact and orderly membraneous phases with active intermolecular interactions. Therefore it is pertinent to inquire whether the elementary act of regulation is necessarily always restricted to one macromolecule or whether there is a possibility of functionally important cooperative transition involving most if not all components of a polymolecular ensembles. We have in mind here the structural long-range effects when local perturbations in the receptor region of the membrane are able to propagate their effects to comparatively large distances. This would occur in a stepwise cooperative transition between two discrete structural states. After we expressed this idea3,4 we discovered that there had been earlier opinions along such lines5 and in recent years similar views have become widely known6,7,8.

Since 1965 our laboratory has been concerned with experimental development of a hypothesis of the membraneous-cooperative-conformational mechanism in the regulation of life processes. We have taken the following path: nondenaturational conformational transitions of proteins in solution → rearrangements at the isolated membrane level → rearrangements in the intact membrane system of the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Monod, J., Wyman, J. and Changeux, J. P., J. Mol. Biology 12, 88–118 (1965).

    Google Scholar 

  2. Anfinsen, C. B., Biochem. J. 128, 737–749 (1972).

    Google Scholar 

  3. Konev, S. V., Electronno-vozbuzhdennye sostoyaniya biopolimerov, p. 171–172, Nauka i Tekhnika, Minsk (1965).

    Google Scholar 

  4. Konev, S. V., Aksentsev, S. L., Chernitskii, E. A., Kooperativnye perekhody belkov v kletke., Nauka i Tekhnika, Minsk (1970).

    Google Scholar 

  5. Kavanau, J. E., Structure and Function in Biological Membranes. San-Francisco (1965).

  6. Changeux, J. P., Thiery, J., Tung, G. and Kittel, C., Proc. Natl. Acad. Sci. USA 57, 335–339 (1967).

    Google Scholar 

  7. Gelman, N. S., Lukoyanova, M. A. and Ostrovskii, D. N., Membrany bacterii i dykhatel'naya tsep', Nauka, Moskva (1972).

    Google Scholar 

  8. Sapd, T., Condie, R., Yunis, E. and Rosenberg, A., Ninth International Congress of Biochemistry, Stockholm, Abstract book, p. 256 (1973).

    Google Scholar 

  9. Konev, S. V., Fluorescence and Phosphorescence of Protein and Nucleic Acids. Plenum Press, New York (1967).

    Google Scholar 

  10. Longworth, J. W., In Exited States of Proteins and Nucleic Acids, (Steiner, R. F., Weinzyb, J., editors) New York (1971).

  11. Chernitskii, E. A., Luminestsentsiya i structurnaya labil'nost' belkov v rasvore i kletke., Nauka i Tekhnika, Minsk (1972).

    Google Scholar 

  12. Chernitskii, E. A. and Mazhul', V. M., Biofizika 15, 408–415 (1970).

    Google Scholar 

  13. Konev, S. V. and Katibnikov, M. A., Biofizika 6, 638–643 (1961)

    Google Scholar 

  14. Nisenbaum, G. D., Aksentsev, S. L. and Konev, S. V., Biofizika 13, 138–144 (1968).

    Google Scholar 

  15. Aksentsev, S. L., Nisenbaum, G. D., Okun', I. M. and Konev, S. V., Tsitologiya 11, 306–314 (1972).

    Google Scholar 

  16. Sapezhynskii, I. I. and Silaev, Yu. V., Biofizika 12, 38–42 (1967).

    Google Scholar 

  17. Konev, S. V., Volotovskii, I. D. and Voskresenskaya, L. G., Moleculyarnaya biologiya 4, 395–402 (1970).

    Google Scholar 

  18. Volotovskii, I. D., Voskresenskaya, L. G. and Konev, S. V. Biofizika 17, 581–588 (1972).

    Google Scholar 

  19. Sizer, I. W. and Josephson, E. S., Food Res. 7, 201 (1942).

    Google Scholar 

  20. Sizer, I. W., Adv. Enzymology 3, 35–62 (1943).

    Google Scholar 

  21. Somero, G. N. and Hochachka, P. N., Biochem. J. 110, 395–400 (1968).

    Google Scholar 

  22. Massey, V., Curti, B. and Ganther, H., J. Biol. Chem. 241, 2347–2357 (1966)

    Google Scholar 

  23. Kistiakowsky, G. B. and Lumry, R., J. Am. Chem. Soc. 71, 2006–2013 (1949).

    Google Scholar 

  24. Levy, H. M., Sharon, N. and Koshland, D. E., Biochem. Biophys. Acta. 33, 288–289 (1959).

    Google Scholar 

  25. Kayne, F. J. and Suelter, C. H., J. Am. Chem. Soc. 87, 897–900 (1965).

    Google Scholar 

  26. Konev, S. V., Mazhul', V. M. and Chernitskii, E. A., DAN BSSR 12, 1122–1126 (1968).

    Google Scholar 

  27. Aksentsev, S. L., Nisenbaum, G. D., Konev, S. V. and Okun', I. M., Moleculjarnaya biologiya 4, 184–190 (1970).

    Google Scholar 

  28. Privalov, P. L. and Khechinashvili, N. N., Moleculjarnaya biologiya 5, 718–723 (1971).

    Google Scholar 

  29. Likhtenshtein, G. I. and Kol'tover, V. K., in Moleculjarnaya biologiya (Itogi Nauki i Tekhniki) vol. 3, p. 37, Moskva (1973).

  30. Rubenchik, A. Ya. and Konev, S. V., in Biokhimiya, p. 200, Minsk (1973).

  31. Bacila, M. and Barron, E., Endrocrinology 54, 591–597 (1954).

    Google Scholar 

  32. Titova, G. V., Biokhimiya 35, 1028–1032 (1970).

    Google Scholar 

  33. Troitskii, G. V., Zavi'yalov, V. P. and Kiryukhin, I. F., Biofisika 16, 785–790 (1971).

    Google Scholar 

  34. Kiryukhin, I. F., Troitskii, G. V. and Zavi'yalov, V. P., Moleculjarnaya Biologiya 6, 196–201 (1972).

    Google Scholar 

  35. Drost-Hansen, W., Annals N.Y. Acad. Sci. 204, 100–112 (1973).

    Google Scholar 

  36. Suelter, C. H., Biochemistry 6, 418–423 (1967).

    Google Scholar 

  37. Han Moon, H. and Benson, E. S., Biochem. Biophys. Res. Commun. 38, 378–384 (1970).

    Google Scholar 

  38. Chernitskii, E. A. and Kozlova, N. M., Izvestiya AN BSSR, Ser. Biyol. No 1, 47–51 (1971).

  39. Nisenbaum, G. D., Aksentsev, S. L. and Konev, S. V., Biofizika 14, 402–410 (1969).

    Google Scholar 

  40. Chernitskii, E. A., Konev, S. V., Lin, E. I., Lyskova, T. I. and Kozlova, N. M., DAN SSSR 207, 211–215 (1972).

    Google Scholar 

  41. Konev, S. V., Okun', I. M., Aksentsev, S. L., Nisenbaum, G. D. and Adzerikho, R. D., DAN SSSR 205, 979–983 (1972).

    Google Scholar 

  42. Volotovskii, I. D., Finin, V. S., Sheiko, L. M. and Konev, S. V., DAN BSSR 17, 569–573 (1973).

    Google Scholar 

  43. Burt, D. H. and Green, J., Biochem. Biophys. Acta 225, 46–55 (1971).

    Google Scholar 

  44. Jung, Y., Carlson, L. and Whaley, D., Biochem. Biophys. Acta, 241, 613–621 (1971).

    Google Scholar 

  45. Steim, J. M., Tourtellotte, M. E., Reinart, J. C., McElhaney, R. N. and Rader, R. L., Proc. Natl. Acad. Sci. USA 63, 105–109 (1969).

    Google Scholar 

  46. Chapman, D. and Urbina, J., FEBS Letters 12, 169–173 (1971).

    Google Scholar 

  47. Overath, P. and Träuble, H., Biochemistry 12, 2625–2634 (1973).

    Google Scholar 

  48. Sonenberg, M., Biochem. Biophys. Res. Commun. 36, 450–454 (1969).

    Google Scholar 

  49. Sonenberg, M., Proc. Natl. Acad. Sci. USA 68, 1051–1055 (1971).

    Google Scholar 

  50. Rubin, M. S., Swislocki, N. J. and Sonenberg, M., Arch. Biochem. Biophys. 157, 243–251, 252–259 (1973).

    Google Scholar 

  51. Konev, S. V., Slobozhanina, E. I. and Chernitskii, E. A., DAN SSSR 208, 239–243 (1973).

    Google Scholar 

  52. Volotovskii, I. D., Finin, V. S. and Konev, S. V., Biofizika (in press).

  53. Chernitskii, E. A., Lin, E. I. and Konev, S. V., Biofizika 14, 1023–1026 (1969).

    Google Scholar 

  54. Shalatonin, V. G., Zhuk, V. I., Konev, S. V., Chernitskii, E. A. and Slobozhanina, E. I., DAN BSSR 17, 764–767 (1973).

    Google Scholar 

  55. Franz, D. N. and Iggo, A, J. Physiol. 199, 319–345 (1968).

    Google Scholar 

  56. Klussmann, F. W., Stelter, W. J. and Spaan, G., Federation Proc. 28, 992–995 (1969).

    Google Scholar 

  57. Dalton, T. and Snart, R. S., Comp. Biochem. Physiol. 27, 591–595 (1968).

    Google Scholar 

  58. Lin, E. I., Konev, S. V. and Chernitskii, E. A., Biofizika 17, 159–162 (1972).

    Google Scholar 

  59. Konev, S. V., Chernitskii, E. A., Mazhul', V. M. and Yaskevich, V. P., Izvestiya AN SSSR, seriya Biol. No. 1, 21–24 (1971).

  60. Konev, S. V., Lyskova, T. I. and Chernitskii, E. A., Biofizika 17, 833–835 (1972).

    Google Scholar 

  61. Lyskova, T. I., Finin, V. S. and Konev, S. V., DAN BSSR 15, 273–276 (1971).

    Google Scholar 

  62. Rudenok, A. N. and Konev, S. V., DAN SSSR 208, 977–980 (1973).

    Google Scholar 

  63. Packer, L., Utsumi, K. and Mustafa, M. G., Arch. Biochem. Biophys. 117, 381–393 (1966).

    Google Scholar 

  64. Aksentsev, S. L., Okun, I. M., Nasonova, G. V., Nisenbaum, G. D. and Konev, S. V., DAN BSSR 16, 73–76 (1972).

    Google Scholar 

  65. Konev, S. V. and Rudenok, A. N., in Microorganizmy-Produtsenty Biologicheski Aktivnykh Veschestv, pp. 172–175, Nauka i Tekhnika, Minsk (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

an invited article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konev, S.V., Chernitskii, E.A., Aksentsev, S.L. et al. Nondenaturational structural transitions of proteins and biological membranes. Mol Cell Biochem 7, 5–17 (1975). https://doi.org/10.1007/BF01732159

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01732159

Keywords

Navigation