Communications in Mathematical Physics

, Volume 6, Issue 3, pp 228–232 | Cite as

Euclidean proof of the Goldstone theorem

  • K. Symanzik


The Goldstone theorem in the formulation ofKastler,Robinson, andSwieca is proven in the framework of Euclidean quantum field theory. One utilizes that Schwinger functions have the cluster property in all directions.


Neural Network Statistical Physic Field Theory Complex System Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goldstone, J.: Nuovo Cimento19, 154 (1961).Google Scholar
  2. 2.
    Kastler, D., D. W. Robinson, andA. Swieca: Commun. Math. Phys.2, 108 (1966).Google Scholar
  3. 3.
    Schwinger, J.: Proc. Nat. Acad. Sci.44, 956 (1958).Google Scholar
  4. 3a.
    Nakano, T.: Progr. Theor. Phys. (Kyoto)21, 241 (1959).Google Scholar
  5. 4.
    Ruelle, D.: Thesis (Bruxelles, 1959); Nuovo Cimento19, 356 (1961).Google Scholar
  6. 5.
    Symanzik, K.: J. Math. Phys.7, 510 (1966).Google Scholar
  7. 6.
    Wightman, A. S.: Phys. Rev.101, 860 (1956).Google Scholar
  8. 7.
    Borchers, H. J.: Nuovo Cimento33, 1600 (1964).Google Scholar
  9. 8.
    E.g.,Lam, C.S.: Nuovo Cimento38, 1755 (1965).Google Scholar
  10. 8a.
    Brown, L. S.: Phys. Rev.150, 1338 (1966).Google Scholar
  11. 9.
    Jaffe, A.: Phys. Rev.158, 1454 (1967).Google Scholar
  12. 10.
    Peierls, R. E.: Proc. Roy. Soc. (London)A214, 143 (1952).Google Scholar
  13. 10a.
    Schwinger, J.: Phys. Rev.91, 713 (1953).Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • K. Symanzik
    • 1
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew York

Personalised recommendations