Advertisement

Communications in Mathematical Physics

, Volume 9, Issue 4, pp 339–346 | Cite as

Quantum theory of gravitation and locality postulate

  • K. Kraus
Article

Abstract

A quantized space-time metricg ik (x) is investigated within a suitably modified axiomatic approach. Coordinate distancesdx are called absolutely space-like ifg ik (x)dx i dx k is negative definite. For such distances, fields are assumed to commute or anticommute, respectively (generalized locality). The quantum fluctuations of the light coneg ik (x)dx i dx k =0 are shown to extend to distancesdx which are space-like with respect to the Minkowski metric. Generalized locality is therefore weaker than the usual locality postulate.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Streater, R. F., andA. S. Wightman: PCT, spin and statistics, and all that. New York-Amsterdam: W. A. Benjamin 1964.Google Scholar
  2. 2.
    Strocchi, F.: Phys. Rev.166, 1302 (1968).Google Scholar
  3. 3.
    Jaffe, A.: Phys. Rev.158, 1454 (1967).Google Scholar
  4. 4.
    Wightman, A. S.: Phys. Rev.101, 860 (1956).Google Scholar
  5. 5.
    Fock, V.: The theory of space time and gravitation. London-New York-Paris-Los Angeles: Pergamon Press 1959.Google Scholar
  6. 6.
    Arnowitt, R. L., S. Deser, andC. W. Misner in: Recent developments in general relativity, p. 127. New York: Pergamon Press 1962, and further work quoted there.Google Scholar
  7. 7.
    Gupta, S. N.: Proc. Phys. Soc. A65, 161, 608 (1952).Just, K.: Nuovo Cimento34, 567 (1964).Google Scholar
  8. 8.
    Strocchi, F.: Phys. Rev.162, 1429 (1967).Google Scholar
  9. 9.
    Weinberg, S.: Brandeis lectures 1964, Vol. II, p. 405, and further work quoted there.Google Scholar
  10. 10.
    Epstein, H., V. Glaser, andA. Jaffe: Nuovo Cimento36, 1016 (1965).Google Scholar
  11. 11.
    Reeh, H., andS. Schlieder: Nuovo Cimento22, 1051 (1961).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • K. Kraus
    • 1
  1. 1.Institut für Theoretische Physik der Universität MarburgGermany

Personalised recommendations