Advertisement

Communications in Mathematical Physics

, Volume 9, Issue 4, pp 279–292 | Cite as

Über das Verhältnis der Theorie der Elementarlänge zur Quantentheorie

  • P. Jordan
Article

Abstract

This is a Discussion of the idea that a generalisation of quantum mechanics (seeming to be necessary) might require a) a new concept about possibilities of microphysical measurement; b) new mathematical structures as tools of theoretical description. Perhaps, a) could have the form that in the general case of the new theory the measurement of an observableu can be performed only so far as to measure in a statistical ensemble the mean value\(\bar u\) and the mean quadratic deviation (\(\overline {(\Delta u)^2 } = \overline {u^2 } - \bar u^2 \). Perhaps, b) could be fulfilled by a new class of non-associative, commutative algebras defined in this article. Certainly the following is only a first attempt, putting forward more questions than answers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Braun, H.: Doppelverhältnisse in Jordan-Algebren. (Im Erscheinen).Google Scholar
  2. 2.
    ——, u.M. Koecher: Jordan-Algebren. Berlin: Springer 1966.Google Scholar
  3. 3.
    Gunson, J.: Commun. math. Phys.6, 262 (1967).Google Scholar
  4. 4.
    Jordan, P., J. v. Neumann u.E. Wigner: Ann. Math.35, 29 (1934).Google Scholar
  5. 5.
    --, u.S. Matsushita: Akad. d. Wiss. u. d. Lit. (Mainz) 1967, S. 121.Google Scholar
  6. 6.
    -- Zur Theorie nichtassoziativer Algebren. (Im Erscheinen).Google Scholar
  7. 7.
    Koecher, M.: On Lie algebras defined by Jordan algebras. Aarhus Universitet 1967.Google Scholar
  8. 8.
    Mielnik, B.: Commun. Math. Phys.9, 55–80 (1968).Google Scholar
  9. 9.
    Petersson, H. P.: Dissertation München 1966. Math. Z.97, 1 (1967);98, 104 (1967).Google Scholar
  10. 10.
    Piron, C.: Helv. Phys. Acta37, 439 (1964).Google Scholar
  11. 11.
    Rühaak, H.: (In Vorbereitung).Google Scholar
  12. 12.
    Schafer, R. D.: An introduction to nonassociative algebra. New York u. London: Academic Press 1966.Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • P. Jordan
    • 1
  1. 1.Hamburg 13

Personalised recommendations