Advertisement

Communications in Mathematical Physics

, Volume 57, Issue 1, pp 51–66 | Cite as

The non-relativistic limit ofP(ϕ)2 quantum field theories: Two-particle phenomena

  • J. Dimock
Article

Abstract

It is proved that for two-particle phenomena theP(ϕ)2 quantum field theories with speed of lightc converge to non-relativistic quantum mechanics with a δ function potential in the limitc→∞.

Keywords

Neural Network Statistical Physic Field Theory Complex System Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bros, J., Epstein, H., Glaser, V.: Helv. Phys. Acta45, 149 (1972)Google Scholar
  2. 2.
    Dimock, J.: Commun. math. Phys.35, 347 (1974)Google Scholar
  3. 3.
    Dimock, J., Eckmann, J.P.: Commun. math. Phys.51, 41 (1976)Google Scholar
  4. 4.
    Dimock, J., Eckmann, J.P.: Ann. Phys.103, 289 (1977)Google Scholar
  5. 5.
    Eckmann, J.P.: Remarks on the classical limit of quantum field theories. Geneva PreprintGoogle Scholar
  6. 6.
    Eckmann, J.P., Epstein, H., Fröhlich, J.: Ann. Inst. Henri Poincaré25, 1 (1976)Google Scholar
  7. 7.
    Faris, W.: Self-adjoint operators. Lecture notes in mathematics, Vol. 433. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  8. 8.
    Glimm, J., Jaffe, A.: Commun. math. Phys.44, 293 (1975)Google Scholar
  9. 9.
    Glimm, J., Jaffe, A., Spencer, T.: Ann. Math.100 (1974), and contribution to: Constructive quantum field theory (eds. G. Velo, A. Wightman). Lecture notes in physics, Vol. 25. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  10. 10.
    Hepp, K.: Commun. math. Phys.1, 95 (1965)Google Scholar
  11. 11.
    Hepp, K.: Commun. math. Phys.35, 265 (1974)Google Scholar
  12. 12.
    Hunziker, W.: Commun. math. Phys.40, 215 (1974)Google Scholar
  13. 13.
    Ikebe, T.: Arch. Rat. Mech. Anal.5, 1 (1960)Google Scholar
  14. 14.
    Osterwalder, K., Schrader, R.: Commun. math. Phys.31, 83 (1973);42, 281 (1975)Google Scholar
  15. 15.
    Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. II. New York: Academic Press 1975Google Scholar
  16. 16.
    Spencer, T.: Commun. math. Phys.44, 143 (1975)Google Scholar
  17. 17.
    Spencer, T., Zirilli, F.: Commun. math. Phys.49, 1 (1976)Google Scholar
  18. 18.
    Streater, R., Wightman, A.: PCT, spin-statistics, and all that. New York: Benjamin 1964Google Scholar
  19. 19.
    Simon, B.: Quantum mechanics for Hamiltonians defined as quadratic forms. Princeton: Princeton University Press 1971Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • J. Dimock
    • 1
  1. 1.Department of MathematicsSUNY at BuffaloAmherstUSA

Personalised recommendations