Advertisement

Communications in Mathematical Physics

, Volume 57, Issue 1, pp 1–30 | Cite as

The pole-factorization theorem inS-matrix theory

  • Daniel Iagolnitzer
  • Henry P. Stapp
Article

Abstract

Previous derivations of physical-region discontinuity formulas in S-matrix theory make use of an ad hoc assumption according to which certain sets of singularities associated with mixed-α Landau diagrams cancel among themselves. The aim of the present work is to prove the simplest of these discontinuity formulas, namely, the pole-factorization theorem for a 3 → 3 equal-mass process below the 4-particle threshold, without using this mixed-α cancellation assumption. The result is derived from macro-causality, unitarity and two weak regularity assumptions on scattering functions and bubble diagram functions.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Iagolnitzer, D., Stapp, H. P.: Commun. math. Phys.14, 15–55 (1969) and references quoted thereinGoogle Scholar
  2. 2.
    Coster, J., Stapp, H. P.: J. Math. Phys.10, 371–396 (1969);11, 1441–1463 (1970);11, 2743–2763 (1970)Google Scholar
  3. 3.
    Bloxham, M. J. W., Olive, D. I., Polkinghorne, J. C.: J. Math. Phys.10, 494–502, 545–552, 553–561 (1969)Google Scholar
  4. 4.
    Stapp, H. P.: In: Structural analysis of collision amplitudes (Les Houches 1975 June Institute) (ed. R. Balian, D. Iagolnitzer), Amsterdam, New York, Oxford; North-Holland Publ. Co. 1976Google Scholar
  5. 5.
    Iagolnitzer, D.: In: TheS-matrix. Amsterdam, New York, Oxford; North-Holland Publ. Co., to be publishedGoogle Scholar
  6. 6.
    Chandler, C., Stapp, H. P.: J. Math. Phys.10, 826–859 (1969) Theorem 5Google Scholar
  7. 7.
    Pham, F.: Ann. Inst. Henri Poincaré6, 89–204 (1967)Google Scholar
  8. 8.
    Iagolnitzer, D.: In: Structural analysis of collision amplitudes, Part III (Les Houches 1975 June Institute) (ed. R. Balian, D. Iagolnitzer), Amsterdam, New York, Oxford; North-Holland Publ. Co. 1976)Google Scholar
  9. 9.
    Iagolnitzer, D.: (a) Commun. math. Phys.41, 39–53 (1975).Google Scholar
  10. 9(b).
    Structural analysis of collision amplitudes (Ref. [8]) Part II, Course 1. (Les Houches 1975 June Institute) (ed. R. Balian, D. Iagolnitzer), Amsterdam, New York, Oxford; North-Holland Publ. Co. 1976).Google Scholar
  11. 9(c).
    Proceedings of the Oji Seminar in Algebraic Analysis, Kyoto, Japan (1976).Google Scholar
  12. 9(d).
    Structure theorem inS-matrix theory — Some complementary remarks (unpublished)Google Scholar
  13. 10.
    Stapp, H. P.: J. Math. Phys.9, 1548–1592 (1968); J. Math. Phys.11, 2743–2763 (1970), Appendix A and [9]. The version of the theorem presented here is due to [9]Google Scholar
  14. 11.
    Kawai, T., Stapp, H. P.: In: Lecture notes in physics, Vol. 39, p. 36. Berlin-Heidelberg-New York: Springer 1975 and in Proceedings of the Oji Seminar in Algebraic Analysis, Kyoto, Japan (1976) (Also RIMS-214, Research Inst. for Math. Sciences, Kyoto University, Kyoto, Japan, 1976)Google Scholar
  15. 12.
    Eden, R. J., Landshoff, P. V., Olive, D. I., Polkinghorne, J. C.: The analyticS-matrix, p. 216. Cambridge: Univ. Press 1966Google Scholar
  16. 13.
    Kashiwara, M., Kawai, T., Stapp, H. P.: In: Proceedings of the Oji Seminar in Algebraic Analysis, Kyoto, Japan (1976) (Also RIMS-213, Research Inst. for Math. Sciences, Kyoto University, Kyoto, Japan, 1976)Google Scholar
  17. 14.
    Iagolnitzer, D.: In: Lecture notes in mathematics, Vol. 449. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  18. 15.
    Kashiwara, M., Kawai, T.: In: Proceedings of the Oji Seminar in Algebraic Analysis, Kyoto, Japan (1976) (Also RIMS-211 Research Inst. for Math. Sciences, Kyoto University, Kyoto, Japan, 1976)Google Scholar
  19. 16.
    Bros, J., Epstein, H., Glaser, V.: Nuovo Cimento31, 1265–1302 (1964), p. 1289Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Daniel Iagolnitzer
    • 1
  • Henry P. Stapp
    • 2
  1. 1.Service de Physique Théorique, Centre d'Études Nucléaires de SaclayF-Gif-sur-YvetteFrance
  2. 2.Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations