Skip to main content
Log in

On some groups of automorphisms of von Neumann algebras with cyclic and separating vector

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let\(\mathfrak{A}\) be a von Neumann algebra with the vector ω cyclic and separating for\(\mathfrak{A}\). Let\(\mathfrak{B}_G\) be a group of unitary operators under which both ω and\(\mathfrak{A}\) are invariant. Let\(\mathfrak{B}\) (resp. ℜ′) be the fixed point algebra in 21 (resp. in\(\mathfrak{A}\)′). LetF o be an orthogonal projection onto the subspace of all vectors invariant under\(\mathfrak{B}_G\). It is shown that ℜ=(\(\mathfrak{A}\) ν {F o})″ and that the irreducibility of ℜ implies thatF o is one-dimentional. Other consequences of the Theorem ofKovács andSzücs are also derived. In sec. 3. the spectrum properties of the group\(\mathfrak{B}_G\) are studied. It is proved that the point spectrum of\(\mathfrak{B}_G\) is symmetric and that it is a group provided ℜ is irreducible. In this case there exists a homomorphism χ→\(\hat \chi\) (resp. χ →\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\chi }\)) of the point spectrum of\(\mathfrak{B}_G\) into the group of unitary operators in\(\mathfrak{A}\) (resp. in\(\mathfrak{A}\)′) uniquely (up to the phase) defined by\(\hat \chi\) V g=χ(g)V g \(\hat \chi\) (resp. the same for\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\chi }\)). In sec. 4. the application of the foregoing results to the KMS-Algebra is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Haag, R., N. M. Hugenholtz, andM. Winnink: Commun. Math. Phys.5, 215 (1967).

    Google Scholar 

  2. Winnink, M.: An application of C*-algebras to quantum statistical mechanics of systems in equilibrium. Thesis, Groningen 1968.

  3. Robinson, D. W.: Commun. Math. Phys.7 337 (1968).

    Google Scholar 

  4. Kovacs, I., andJ. Szücs: Acta Sc. Math.27 233 (1966).

    Google Scholar 

  5. Doplicher, S., D. Kastler, andE. Stormer: Invariant states and Asymptotic Abelianness, preprint 1968.

  6. —— —— Commun. Math. Phys.7 1 (1968).

    Google Scholar 

  7. Stormer, E.: Commun. Math. Phys.5 1 (1967).

    Google Scholar 

  8. Dixmier, J.: Les algebres d'opérateurs dans l'espace Hilbertien. Paris 1957.

  9. Araki, H., andH. Miyata: On KMS Boundary Condition, preprint 1968.

  10. Doplicher, S., R. W. Kadison, D. Kastler, andD. W. Robinson: Commun. Math. Phys.6 101 (1967).

    Google Scholar 

  11. Robinson, D. W., andD. Ruelle: Ann. Inst. Henri Poincaré Vol. VI, no 4, 299 (1967).

    Google Scholar 

  12. Jadczyk, A. Z.: Commun. Math. Phys.12 58 (1969).

    Google Scholar 

  13. Jadczyk, A. Z., andL. Nikolova: Internal symmetries and observables, preprint (1969).

  14. Hugenholtz, N. M., andJ. D. Wieringa: On locally normal states in quantum statistical mechanics, preprint (1968).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jadczyk, A.Z. On some groups of automorphisms of von Neumann algebras with cyclic and separating vector. Commun.Math. Phys. 13, 142–153 (1969). https://doi.org/10.1007/BF01649873

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01649873

Keywords

Navigation