Skip to main content
Log in

Current commutation relations in the framework of general quantum field theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we give a rigorous formulation of Gell-Mann's equal time commutation relations in the framework of general quantum field theory. We show that this can be achieved despite the nonexistence of charge operators for nonconserved currents. Starting from the properly formulated equal time commutation relations of “generalized charges”, we justify the application of the Gauss-Theorem and we discuss the limits for large times of time dependent “generalized charges”. The Jost-Lehmann-Dyson representation is used in order to show that the equal time commutation relations always lead to exactly one, frame independent, sum rule. We discuss the connection between properties of the Jost-Lehmann-Dyson spectral function and the convergence of Adler-Weisberger type sum rules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gell-Mann, M.: Phys. Rev.125, 1067 (1962).

    Google Scholar 

  2. Adler, A.: Phys. Rev. Letters14, 1051 (1965).

    Google Scholar 

  3. Weisberger, W. I.: Phys. Rev. Letters14, 1047 (1965).

    Google Scholar 

  4. Fubint, S., G. Furlan, andC. Rosetti: Nuovo cimento40, 1171 (1965).

    Google Scholar 

  5. Fubini, S.: Nuovo cimento43, 475 (1966).

    Google Scholar 

  6. Jost, R.: The general theory of quantized fields. Rhode Islands: American Mathematical Soc. Providence 1965.

    Google Scholar 

  7. Haag, R.: Phys. Rev.112, 669 (1958).

    Google Scholar 

  8. Ruelle, D.: Helv. Phys. Acta35, 147 (1962).

    Google Scholar 

  9. Araki, H., K. Hepp, andD. Ruelle: Helv. Phys. Acta35, 164 (1962).

    Google Scholar 

  10. Kastler, D., D. W. Robinson, andA. Swieca: Commun. Math. Phys.2, 108 (1966).

    Google Scholar 

  11. Källén, G.: Helv. Phys. Acta25, 417 (1952)

    Google Scholar 

  12. Lehmann, H.: Nuovo cimento11, 342 (1954).

    Google Scholar 

  13. Schroer, B.: Diplomarbeit, Hamburg (1958) unpublished.

  14. Jost, R.: Lectures on field theory, Naples (1959).

  15. Federbush, P. G., andK. A. Johnson: Phys. Rev.120, 1926 (1960).

    Google Scholar 

  16. Coleman, S.: Phys. Letters19, 144 (1965).

    Google Scholar 

  17. Fabri, E., andL. E. Picasso: Phys. Rev. Letters16, 408 (1966).

    Google Scholar 

  18. Okubo, S.: Nuovo cimento41, 586 (1966).

    Google Scholar 

  19. Jost, R., andH. Lehmann: Nuovo cimento5, 1598 (1957).

    Google Scholar 

  20. Dyson, F. J.: Phys. Rev.110, 1960 (1958).

    Google Scholar 

  21. Lehmann, H.: Nuovo cimento10, 32 (1958).

    Google Scholar 

  22. Haag, R.: Phys. Rev.112, 669 (1958).

    Google Scholar 

  23. Nishijima, K.: Phys. Rev.111, 995 (1958).

    Google Scholar 

  24. Zimmermann, W.: Nuovo cimento10, 597 (1958).

    Google Scholar 

  25. Borchers, H. J.: Nuovo cimento15, 794 (1960).

    Google Scholar 

  26. See alsoAraki, H., R. Haag, andB. Schroer: Nuovo cimento19, 90 (1961).

    Google Scholar 

  27. Goldberger, M. L., andS. B. Treimann: Phys. Rev.111, 358 (1958).

    Google Scholar 

  28. Bernstein, J., S. Fubini, M. Gell-Mann, andW. Thirring: Nuovo cimento17, 757 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave of absence from University of Pittsburgh, Pittsburgh 13 Penna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schroer, B., Stichel, P. Current commutation relations in the framework of general quantum field theory. Commun.Math. Phys. 3, 258–281 (1966). https://doi.org/10.1007/BF01649524

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01649524

Keywords

Navigation