Advertisement

manuscripta mathematica

, Volume 28, Issue 1–3, pp 269–291 | Cite as

Uniqueness and stability of harmonic maps and their Jacobi fields

  • Willi Jäger
  • Helmut Kaul
Article

Abstract

Let M, N be Riemannian manifolds and let f1, f2: M→N be harmonic maps. Using a maximum principle, an estimate of the distances of these maps by the distances of their boundary values will be proved. Corresponding estimates will be stated for the norm of Jacobi fields along harmonic maps, and for the distances of solutions of the heat equation.

Keywords

Riemannian Manifold Maximum Principle Number Theory Heat Equation Algebraic Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Eells, J., Lemaire, L.: A report on harmonic maps. Bull. London Math. Soc.10. 1–68 (1978)Google Scholar
  2. [2]
    Eells, J., Lemaire, L.: Deformation of metrics and associated harmonic maps. To appear in the V.K.Patodi Memorial Volume. Tata Institute BombayGoogle Scholar
  3. [3]
    Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Amer. J. Math.86. 109–160 (1964)Google Scholar
  4. [4]
    Gromoll, D., Klingenberg, W., Meyer, W.: Riemannsche Geometrie im Großen. Berlin, Heidelberg, New York: Springer 1968Google Scholar
  5. [5]
    Hartman, P.: On homotopic harmonic maps. Canad. J. Math.19. 673–687 (1967)Google Scholar
  6. [6]
    Hildebrandt, S., Kaul, H., Widman, K.O.: An existence theorem for harmonic mappings of Riemannian manifolds. Acta Math.138. 1–16 (1977)Google Scholar
  7. [7]
    Jäger, W., Kaul, H.: Uniqueness of harmonic mappings and of solutions of elliptic equations on Riemannian manifolds. To appear in Math. Ann.Google Scholar
  8. [8]
    Karcher, H.: Riemannian center of mass and mollifier smoothing. Comm. Pure Appl. Math.30. 509–541 (1977)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Willi Jäger
    • 1
  • Helmut Kaul
    • 2
  1. 1.Institut für Angewandte MathematikHeidelbergGermany
  2. 2.Mathematisches InstitutTübingenGermany

Personalised recommendations