Communications in Mathematical Physics

, Volume 17, Issue 3, pp 239–260 | Cite as

An operational approach to quantum probability

  • E. B. Davies
  • J. T. Lewis


In order to provide a mathmatical framework for the process of making repeated measurements on continuous observables in a statistical system we make a mathematical definition of an instrument, a concept which generalises that of an observable and that of an operation. It is then possible to develop such notions as joint and conditional probabilities without any of the commutation conditions needed in the approach via observables. One of the crucial notions is that of repeatability which we show is implicitly assumed in most of the axiomatic treatments of quantum mechanics, but whose abandonment leads to a much more flexible approach to measurement theory.


Neural Network Statistical Physic Complex System Repeated Measurement Quantum Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kolmogorov, A. N.: Foundations of probability theory. Trans. by N. Morrison. New York: Chelsea Publ. Comp. 1950.Google Scholar
  2. 2.
    Mackey, G. W.: Mathematical foundations of quantum mechanics. New York: W. A. Benjamin Inc. 1963.Google Scholar
  3. 3.
    Urbanik, K.: Joint probability distribution of observables in quantum mechanics. Studia Math.21, 117–133 (1961).Google Scholar
  4. 4.
    Varadarajan, V. S.: Probability in physics and a theorem on simultaneous observability. Commun. Pure Appl. Math.15, 189–217 (1962).Google Scholar
  5. 5.
    Umegaki, H.: Conditional expectation in an operator algebra. Tohôku Math. J.6, 177–181 (1954).Google Scholar
  6. 6.
    Nakamura, M., Turumaru, T.: Expectations in an operator algebra. Tohôku Math. J.6, 182–188 (1954).Google Scholar
  7. 7.
    von Neumann, J.: Mathematical foundations of quantum mechanics. Trans. by R. T. Beyer. Princeton: Unive. Press 1955.Google Scholar
  8. 8.
    Schwinger, J.: The algebra of microscopic measurement. Proc. Nat. Acad. Sci. U.S.45, 1542–1554 (1959) and46, 257–265 (1960) and46, 570–579 (1960).Google Scholar
  9. 9.
    Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys.5, 848–861 (1964).Google Scholar
  10. 10.
    Luders, G.: Über die Zustandsänderung durch den Meßprozeß. Ann. Physik (6)8, 322–328 (1951).Google Scholar
  11. 11.
    Goldberger, M. L., Watson, K. M.: Measurement of time correlations for quantum-mechanical systems. Phys. Rev. (2)134, B919–928 (1964).Google Scholar
  12. 12.
    Furry, W. H.: Some aspects of the quantum theory of measurement pp. 1–64. Lectures in Theoretical Physics vol. VIIIa. Boulder: University of Colorado Press 1966Google Scholar
  13. 13.
    Nakamura, M. Umegaki, H.: On von Neumann's theory of measurement in quantum statistics. Math. Japon7, 151–157 (1962).Google Scholar
  14. 14.
    Davies, E. B.: On the repeated measurement of continuous observables in quantum mechanics. J. Funct. Anal. (to appear).Google Scholar
  15. 15.
    —— Quantum stochastic processes. Commun. Math. Phys.15, 277–304 (1969).Google Scholar
  16. 16.
    Schatten, R.: Norm ideals of completely continuous operators. Erg. der Math. Berlin-Göttingen-Heidelberg: Springer: 1960.Google Scholar
  17. 17.
    Ellis, A. J.: The duality of partially ordered normed linear spaces. J. London Math. Soc.39, 730–744 (1964).Google Scholar
  18. 18.
    Namioka, I.: Partially ordered linear topological spaces. Mem. Am. Math. Soc.24 (1957).Google Scholar
  19. 19.
    Mackey, G. W.: Borel structure in groups and their duals. Trans. Am. Math. Soc.85, 134–165 (1957).Google Scholar
  20. 20.
    Moy, S.-T. C.: Characterisations of conditional expectations as a transformation on function spaces. Pacific J. Math.4, 47–64 (1954).Google Scholar
  21. 21.
    Dixmier, J.: Les algèbres d'operateurs dans l'espace hilbertien (algebres de von Neumann). Cahiers scientifiques 25. 2nd ed. Paris: Gauthiers-Villars 1969.Google Scholar
  22. 22.
    Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math.37, 823–843 (1936).Google Scholar
  23. 23.
    von Neumann, J.: Collected works, Vol. IV. No. 17. Edited by A. H. Taub. Oxford: Pergamon Press 1962.Google Scholar
  24. 24.
    Pool, J. C. T.: Baer*-semigroups and the logic of quantum mechanics. Commun. Math. Phys.9, 118–141 (1968).Google Scholar
  25. 25.
    Kakutani, S.: Concrete representation of abstract (M)-spaces. Ann. Math.42, 994–1024 (1941).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • E. B. Davies
    • 1
  • J. T. Lewis
    • 2
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.Institute for Advanced StudyPrincetonUSA

Personalised recommendations