Communications in Mathematical Physics

, Volume 20, Issue 1, pp 26–56 | Cite as

Classes of operations in quantum theory

  • C. M. Edwards


Recent work of Davies and Lewis has shown how partially ordered vector spaces provide a setting in which the operational approach to statistical physical systems may be studied. In this paper, certain physically relevant classes of operations are identified in the abstract framework, some of their properties are derived and applications to the Von Neumann algebra model for quantum theory are discussed.


Neural Network Statistical Physic Recent Work Vector Space Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alfsen, E. M., Anderson, T. B.: Split faces of compact convex sets (pre-print).Google Scholar
  2. 2.
    Cunningham, F.:L-structure inL-spaces. Trans. Am. Math. Soc.95, 274–299 (1960).Google Scholar
  3. 3.
    Davies, E. B.: Quantum stochastic processes. Commun. Math. Phys.15, 277–304 (1969).Google Scholar
  4. 4.
    ——, Lewis, J. T.: An operational approach to quantum probability. Commun. Math. Phys.17, 239–260 (1970).Google Scholar
  5. 5.
    Dixmier, J.: LesC*-algèbres et leurs representations. Paris: Gauthier-Villars 1964.Google Scholar
  6. 6.
    —— Les algèbres d'operateurs dans l'espace hilbertien. Paris: Gauthier-Villars 1969.Google Scholar
  7. 7.
    Edwards, C. M.: The operational approach to algebraic quantum theory I. Commun. Math. Phys.16, 207–230 (1970).Google Scholar
  8. 8.
    Edwards, C. M., Gerzon, M. A.: Monotone convergence in partially ordered vector spaces. Ann. Inst. Henri Poincaré A12, 323–328 (1970).Google Scholar
  9. 9.
    Effros, E. G.: Order ideals in aC*-algebra and its dual. Duke Math. J.30, 391–412 (1963).Google Scholar
  10. 10.
    Ellis, A. J.: The duality of partially ordered normed vector spaces. J. London Math. Soc.39, 730–744 (1964).Google Scholar
  11. 11.
    —— Linear operators in partially ordered vector spaces. J. London Math. Soc.41, 323–332 (1966).Google Scholar
  12. 12.
    Gerzon, M. A.: Split faces of convex sets (in preparation).Google Scholar
  13. 13.
    Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys.5, 846–861 (1964).Google Scholar
  14. 14.
    Hellwig, K.-E., Kraus, K.: Pure operations and measurements. Commun. Math. Phys.11, 214–220 (1969).Google Scholar
  15. 15.
    —— —— Operations and measurements II. Commun. Math. Phys.16, 142–147 (1970).Google Scholar
  16. 16.
    Kadison, R. V.: Isometries of operator algebras. Ann. Math.54, 325–338 (1950).Google Scholar
  17. 17.
    Mackey, G. W.: Mathematical foundations of quantum mechanics. New York: Benjamin 1963.Google Scholar
  18. 18.
    Prosser, R. T.: On the ideal structure of operator algebras. Mem. Am. Math. Soc.45 (1963).Google Scholar
  19. 19.
    Segal, I. E.: Postulates for general quantum mechanics. Ann. Math.48, 930–948 (1948).Google Scholar
  20. 20.
    Stormer, E.: Positive linear maps of operator algebras. Acta Math.110, 233–278 (1963).Google Scholar
  21. 21.
    Von Neumann, J.: Mathematical foundations of quantum mechanics. Princeton: Princeton University Press 1957.Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • C. M. Edwards
    • 1
  1. 1.The Queen's CollegeOxford

Personalised recommendations