Communications in Mathematical Physics

, Volume 20, Issue 1, pp 9–25 | Cite as

On representations of the canonical commutation relations

  • Huzihiro Araki


In the measure space construction of a representation of the canonical commutation relations, the strong continuity of any one parameter subgroup is proved.

All multipliers for the separable case are expressed in a constructive manner and an irreducibility criterion for a subset of multipliers is obtained.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Araki, H.: J. Math. Phys.1, 492–504 (1960).Google Scholar
  2. 2.
    —— Woods, E. J.: Publ. Res. Inst. Math. Sci. Kyoto Univ. Ser. A2, 157–242 (1966).Google Scholar
  3. 3.
    Bourbaki, N.: Integration (Chapter 7 and 8). Paris: Hermann 1963.Google Scholar
  4. 4.
    Dixmier, J.: Les algèbres d'opérateurs dans l'espace Hilbertien. Paris: Gauthier-Villars 1957.Google Scholar
  5. 5.
    Gårding, L., Wightman, A. S.: Proc. Nat. Acad. Sci. U.S.40, 622–626 (1954).Google Scholar
  6. 6.
    Hegerfeldt, G. C.: Basis independence of the basis dependent approach to canonical commutation relations (preprint).Google Scholar
  7. 7.
    Lew, J. S.: Princeton Thesis (1960).Google Scholar
  8. 8.
    Neumann, J. von: Math. Ann.104, 570–578 (1931).Google Scholar
  9. 9.
    Mackey, G. W.: Ann. Math.55, 101–139 (1952).Google Scholar
  10. 10.
    Umemura, Y.: Publ. Res. Inst. Math. Sci. Kyoto Univ. A,1, 1–47 (1965).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • Huzihiro Araki
    • 1
    • 2
  1. 1.Queen's UniversityKingstonCanada
  2. 2.Research Institute for Mathematical SciencesKyoto UniversityKyotoJapan

Personalised recommendations