Communications in Mathematical Physics

, Volume 30, Issue 1, pp 45–54 | Cite as

On the Onsager-Yang-Value of the spontaneous magnetization

  • G. Benettin
  • G. Gallavotti
  • G. Jona-Lasinio
  • A. L. Stella


We show that the value of the spontaneous magnetization for the two-dimensional Ising model computed by Onsager is indeed, the appropriate derivative of the free energy with respect to the magnetic field. The argument is based on a simple application of the duality transformation.


Magnetic Field Neural Network Free Energy Statistical Physic Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Onsager, L.: Suppl. Nuovo Cimento6, 261 (1949).Google Scholar
  2. 2.
    Yang, C. N.: Phys. Rev.85, 809 (1952).Google Scholar
  3. 3.
    Montroll, E. W., Potts, R. B., Ward, J. C.: J. Math. Phys.4, 308 (1963); see also: Schultz, T. D., Mattis, D.C., Lieb, E.H.: Rev. Mod. Phys.36, 856 (1964).Google Scholar
  4. 4.
    Griffiths, R. B.: Phys. Rev.152, 240 (1966).Google Scholar
  5. 5.
    Lebowitz, J. L., Martin-Lof, A.: Commun. math. Phys.25, 276 (1972).Google Scholar
  6. 6.
    Lebowitz, J. L.: Commun. math. Phys.28, 313 (1972).Google Scholar
  7. 7.
    Martin-Löf, A.: Commun. math. Phys.20, 253 (1972); see also: Gallavotti, G., Miracle, S.: Phys. Rev.B5, 2555 (1972).Google Scholar
  8. 8.
    Kramers, H. A., Wannier, G. H.: Phys. Rev.60, 252 (1941).Google Scholar
  9. 9.
    Domb, C.: Adv. Phys.9, 149 (1960).Google Scholar
  10. 10.
    Fisher, M. E., Ferdinand, A. E.: Phys. Rev. Lett.19, 169 (1967).Google Scholar
  11. 10a.
    Kadanoff, L. P., Ceva, H.: Phys. Rev.B3, 3918 (1971).Google Scholar
  12. 10b.
    Benettin, G., Jona-Lasinio, G., Stella, A. L.: Lett. Nuovo Cimento4, 443 (1972) and paper in preparation.Google Scholar
  13. 11.
    Gallavotti, G.: La Rivista del Nuovo Cimento2, 133 (1972).Google Scholar
  14. 12.
    Gallavotti, G.: Commun. math. Phys.27, 103 (1972).Google Scholar
  15. 13.
    Dobrushin, R. L.: preprint (1972), Moscow: “Gibbs states. Description of phase Coexistence in the 3-dimensional Ising model.”Google Scholar
  16. 14.
    In this appendix for convenience of the reader we give a treatment of duality suitable for the purpose of the present paper. It should be mentioned however, that it contains certain remarks on the role of boundary conditions which do not appear in full detail elsewhere in the literature. For recent formulations of duality in the case of more general models see Wegner, F. J.: J. Math. Phys.12, 2259 (1971); — Merlini, D., Gruber, C.: preprint (1972).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • G. Benettin
    • 1
  • G. Gallavotti
    • 1
  • G. Jona-Lasinio
    • 1
  • A. L. Stella
    • 1
  1. 1.Istituto di Fisica dell'UniversitàPadovaItaly

Personalised recommendations