Communications in Mathematical Physics

, Volume 5, Issue 5, pp 330–336 | Cite as

Spontaneous breakdown of symmetries and zero-mass states

  • H. Ezawa
  • J. A. Swieca


In a relativistic field theory Goldstone's theorem is proved without any assumption about the existence of covariant fields and for arbitrary expectation values.


Neural Network Statistical Physic Field Theory Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kastler, D., D. Robinson, andA. Swieca: Commun. Math. Phys.2, 108 (1966).Google Scholar
  2. 2.
    Haag, R., andD. Kastler: J. Math. Phys.5, 848 (1964).Google Scholar
  3. 3.
    Goldstone, J.: Nuovo Cimento19, 154 (1961).Google Scholar
  4. 4.
    ——,A. Salam, andS. Weinberg: Phys. Rev.127, 965 (1962).Google Scholar
  5. 5.
    Guralnik, G. S., T. Kibble, andC. R. Hagen: Phys. Rev. Letters13, 585 (1964).Google Scholar
  6. 6.
    Lange, R. V.: Phys. Rev. Letters14, 3 (1965).Google Scholar
  7. 7.
    Streater, R. F.: Trieste Lectures, May 1965 (published by I.C.E.A., Trieste).Google Scholar
  8. 8.
    Kibble, T.: Oxford Conference Report 1965.Google Scholar
  9. 9.
    Jost, R., andH. Lehmann: Nuovo Cimento5, 1598 (1957);Dyson, F. J.: Phys. Rev.110, 1460 (1958);Araki, H., K. Hepp, andD. Ruelle: Helv. Phys. Acta35, 164 (1962).Google Scholar
  10. 10.
    Streater, R. F., andA. S. Wightman: PCT, spin and statistics and all that, p. 92. New York: Benjamin Inc. 1964;Jost, R.: The general theory of quantized fields, p. 53. Am. Math. Soc., Providence: 1965.Google Scholar
  11. 11.
    Ito, S.: Introduction to Lebesgue integral, p. 134. Tokyo: Syôkabô 1963 (in Japanese); “L” means “with respect to the Lebesgue measure”.Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • H. Ezawa
    • 1
    • 3
  • J. A. Swieca
    • 2
  1. 1.II. Institut für Theoretische PhysikUniversität HamburgHamburgGermany
  2. 2.Department of PhysicsUniversity of IllinoisUrbanaUSA
  3. 3.Department of PhysicsGakushuin UniversityTokyoJapan

Personalised recommendations